

COMPARAÇÃO ENTRE AS ROTAS VIA NAFTA E VIA ETANOL PARA A PRODUÇÃO DE ETENO – ANÁLISE DE CUSTOS E EMISSÕES DE CO₂

Mateus van Hombeeck

Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Planejamento Energético, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Planejamento Energético.

Orientadores: Alexandre Salem Szklo
Pedro Rua Rodriguez Rochedo

Rio de Janeiro Fevereiro de 2019

COMPARAÇÃO ENTRE AS ROTAS VIA NAFTA E VIA ETANOL PARA A PRODUÇÃO DE ETENO – ANÁLISE DE CUSTOS E EMISSÕES DE CO₂

Mateus van Hombeeck

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM PLANEJAMENTO ENERGÉTICO.

Examinada por:	
	Prof. Alexandre Salem Szklo, D.Sc.
	Dr. Pedro Rua Rodriguez Rochedo, D.Sc.
	Profa. Bettina Susanne Hoffmann, D.Sc.
	Profa. Ana Mehl, D.Sc.

RIO DE JANEIRO, RJ – BRASIL FEVEREIRO DE 2019 Hombeeck, Mateus van

Comparação entre as Rotas via Nafta e via Etanol para a Produção de Eteno – Análise de Custos e Emissões de CO₂ / Mateus van Hombeeck. – Rio de Janeiro: UFRJ/COPPE, 2019.

XIII, 83 p.: il.; 29,7 cm.

Orientador (es): Alexandre Salem Szklo

Pedro Rua Rodriguez Rochedo

Dissertação (mestrado) — UFRJ/COPPE/Programa de Planejamento Energético, 2019.

Referências Bibliográficas: p. 79-83.

1. Eteno verde. 2. Petroquímica. 3. Captura de Carbono. I. Szklo, Alexandre Salem *et al.* II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Planejamento Energético. III. Título.

AGRADECIMENTOS

Em primeiro lugar, gostaria de agradecer aos meus orientadores Alexandre Salem Szklo e Pedro Rochedo pela orientação incomparável. Agradeço por toda a paciência, disponibilidade e pela confiança depositada.

Gostaria de agradecer também às professoras Bettina Susanne Hoffmann e Ana Mehl por terem aceitado participar da banca dessa dissertação.

Agradeço também a todos os professores do PPE pelas excelentes aulas durante o curso, em especial ao André, Roberto e Alexandre.

A toda a minha família, pelo amor e suporte incondicional.

A todos os amigos e funcionários do PPE, por tornarem esses dois anos de mestrado muito mais agradáveis!

Agradeço também ao CNPq, pelo apoio financeiro.

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

COMPARAÇÃO ENTRE AS ROTAS VIA NAFTA E VIA ETANOL PARA A PRODUÇÃO DE ETENO – ANÁLISE DE CUSTOS E EMISSÕES DE CO₂

Mateus van Hombeeck

Fevereiro/2019

Orientadores: Alexandre Salem Szklo

Pedro Rua Rodriguez Rochedo

Programa: Planejamento Energético

O eteno possui uma diversificada cadeia de derivados, que lhe confere relevância econômica. A utilização da alcoolquímica para a produção de eteno pode propiciar uma emissão negativa de CO₂, uma vez que além do fato de o CO₂ ser capturado durante o crescimento da planta, o combustível não é queimado e o CO2 não é emitido. Embora mais cara que a rota tradicional via nafta, a alcoolquímica tende a ganhar competitividade caso haja a valoração das emissões de CO₂. Este trabalho analisa as duas rotas de produção de eteno, de forma a averiguar seus custos nivelados e emissões de CO₂. Os resultados da análise indicam que os custos nivelados das rotas correspondem a 813,7US\$/tonelada para a rota via nafta e 1391,9US\$/tonelada para a rota via etanol. A análise de sensibilidade para o preço dos insumos mostra que em diversos cenários, considerando o preço dos mesmos nos últimos anos, a rota via etanol já é mais competitiva que a rota via nafta. Em relação ao CO₂, se sua emissão for valorada de 97 a 169US\$/t CO₂, dependendo da configuração do processo, as rotas passariam a ter custos nivelados equivalentes. Por sua vez, o eteno verde brasileiro poderia ainda ser introduzido no mercado chinês caso essa valoração chegue entre 46 e 68US\$/tonelada de CO₂. Tal fato, indica que a valoração do CO₂ poderia aumentar a competitividade do eteno brasileiro no mercado internacional, particularmente em um país onde a escala produtiva

٧

das plantas de eteno tornam a sua produção menos custosa do que no Brasil.

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

COMPARISON BETWEEN ROUTES VIA NAFTA AND VIA ETHANOL FOR

ETHENE PRODUCTION - COST ANALYSIS AND CO2 EMISSIONS

Mateus van Hombeeck

February/2019

Advisors: Alexandre Salem Szklo

Pedro Rua Rodriguez Rochedo

Department: Energy Planning

Ethene has a diversified chain of derivatives, which corroborates its economic

relevance. The use of ethanol for the production of ethylene (the so-called *green ethylene*)

can lead to a negative emission of CO₂, since in addition to the CO₂ being captured during

sugarcane growth, the fuel is not burnt and CO₂ is not emitted. Although more expensive

than the traditional route via naphtha, the alcohol chemistry could gain competitiveness

if CO₂ emissions are valued. This work analyzes two ethene production routes, in order

to ascertain their levelized costs and CO₂ emissions. Results indicate that the levelized

costs correspond to US\$ 813.7/ tonne of ethene for the route via naphtha and US\$ 1391.9/

tonne of ethene for the route via ethanol. The sensitivity analyses for feedstock prices

show that in, some scenarios, given the historical price series, the route through ethanol

is already more competitive than the route via naphtha. Moreover, if CO₂ emissions are

valued at US\$ 97 to US\$169/ tCO₂, depending on the process configuration, the routes

would have equivalent levelized costs. Finally, the Brazilian green ethylene could still be

introduced into the Chinese market if that valuation reaches US\$ 46 to US\$ 68/ tonne of

CO₂. This indicates that the valuation of CO₂ could increase the competitiveness of the

Brazilian ethylene in the international market, particularly in a country where the

production scale of ethene plants make its production less costly than in Brazil.

vi

Sumário

LISTA DE TABELAS	X
LISTA DE EQUAÇÕES	xii
LISTA DE ABREVIATURAS E SIGLAS	xiii
1. Introdução	1
1.1 Contextualização do problema	1
1.2 Objetivo da dissertação e estrutura do desenvolvimento	4
2. Estado da arte da indústria petroquímica brasileira	6
2.1 Aspectos gerais da indústria petroquímica	6
2.2 Estrutura da indústria petroquímica brasileira	9
2.3 Descrição das rotas de produção de eteno	18
2.3.1 Via nafta	18
2.3.1.1 Descrição do processo da ABB Lummus Global	19
2.3.1.2 Análise técnica	21
2.3.2 Via etanol	24
3. Metodologia	31
3.1 Parâmetros técnico-econômicos	31
3.2 Análise de custos	33
3.3 Análise financeira	43
3.4 Custo do frete	44
4. Resultados	47
4.1 Mercado nacional	47
4.1.1 Rota via nafta	47
4.1.2 Rota via etanol	50
4.1.3 Comparação entre as rotas	52
4.1.4 Análise de sensibilidade	55
4.1.4.1 Custos dos insumos e coprodutos	55
4.1.4.2 Taxa de desconto	58
4.1.4.3 Aumento do domínio técnico da rota via etanol (redução contingência)	
4.1.4.4 Queda do custo de O&M da rota via etanol	61
4.1.5 Comparação entre as rotas considerando a valoração das en	missões de CO ₂ 62
4.2 Análise da possível inserção do eteno brasileiro via etanol no	mercado chinês 69
5. Conclusão	73
Referências Ribliográficas	70

LISTA DE FIGURAS

Figura 1-1: Destino final no uso de plásticos
Figura 2-1: Esquema geral da cadeia petroquímica
Figura 2-2: Esquema geral do projeto inicial do COMPERJ
Figura 2-3: Nova configuração do COMPERJ após as modificações feitas pela
Petrobrás
Figura 2-4: Balança comercial da indústria química brasileira
Figura 2-5: Balança comercial brasileira para a nafta
Figura 2-6: Produção de nafta no Brasil
Figura 2-7: Esquema do processo da ABB Lummus Global de produção de etendo
via nafta
Figura 2-8: Histórico do preço da nafta nos últimos 10 anos
Figura 2-9: Fluxograma do processo de desidratação de etanol
Figura 2-10: Seção de tratamento do eteno
Figura 2-11: Esquema do processo para a produção de bioetileno
Figura 2-12: Histórico de preço do etanol pago ao produtor no Brasil
Figura 2-13: Esquema da transformação da molécula de glicose em etileno
Figura 3-1: Distribuição dos custos da planta de eteno a partir da nafta
Figura 3-2: Fluxograma do processo de produção de eteno a partir do etanol 36
Figura 4-1: Componentes do custo nivelado de produção de eteno a partir da nafta 49
Figura 4-2: Principais componentes do custo nivelado de eteno a partir do etanol52
Figura 4-3: CAPEX e OPEX das rotas via Nafta e via Etanol (em US\$/t) 54
Figura 4-4: Custo nivelado de eteno para diferentes preços de insumos e coprodutos 58
Figura 4-5: Custos nivelados de eteno para diferentes taxas de desconto
Figura 4-6: Curva global de custos de produção e capacidade para o etileno69

Figura 4-7: Custo de produção do etileno em função do valor de emissão de CO2 sem	l
considerar a captura de CO ₂ da fermentação alcóolica	70
Figura 4-8: Custo de produção do etileno em função do valor de emissão de CO ₂	
considerando também a captura de CO ₂ da fermentação alcóolica	71
Figura 4-9: Custo nivelado da produção de eteno considerando o frete para a China	72

LISTA DE TABELAS

Tabela 2-1: Capacidade instalada do polo petroquímico de São Paulo	11
Tabela 2-2: Capacidade instalada do polo petroquímico da Bahia	2
Tabela 2-3: Capacidade instalada do polo petroquímico de Triunfo (RS)	13
Tabela 2-4: Capacidade instalada da Rio Polímeros	13
Tabela 2-5: Produção e vendas de eteno no Brasil	17
Tabela 2-6: Rendimento dos produtos do processo da ABB Lummus Global em função da fonte de alimentação	20
Tabela 2-8: Consumo de eletricidade da planta de nafta, considerando uma vazão de 31,86kg/s de eteno	23
Tabela 2-9: Emissões de cada etapa da produção de bioetileno	0
Tabela 3-1: Emissões da rota via etanol para a produção de etileno	33
Tabela 3-2: Cálculo dos custos da planta de eteno via nafta	35
Tabela 3-3: Valores de contingência de processo para cada status da tecnologia	37
Tabela 3-4: Preços e rendimentos das rotas de produção de etileno	10
Tabela 3-5: Preços dos coprodutos do craqueamento a vapor da nafta	42
Tabela 3-6: Total de emissões de CO ₂ por tipo de navio	16
Tabela 3-7: Emissões por metro cúbico e por tonelada de eteno transportada	46
Tabela 4-1: Resultados para o CAPEX da rota via nafta	18
Tabela 4-2: Custos operacionais da produção de eteno a partir da nafta	48
Tabela 4-3: Resultados para o CAPEX da rota via etanol	50
Tabela 4-4: Custos operacionais da rota via etanol	51

Tabela 4-5: Comparação dos principais componentes do custo nivelado de produção de
eteno das duas rotas
Tabela 4-6: Custo nivelado do eteno para diferentes preços da nafta e de coprodutos 56
Tabela 4-7: Custo nivelado do eteno em função do preço do etanol
Tabela 4-8: Comparação dos custos nivelados considerando os mesmos fatores de contingência e o gás natural como combustível
Tabela 4-9: Comparação dos custos nivelados considerando os mesmos fatores de contingência e o gás natural como combustível
Tabela 4-10: Análise de sensibilidade considerando o fator de 7% para o custo de O&M
da rota via etanol
Tabela 4-11: Resultado dos preços de convergência para diversos cenários de custos e
emissão (US\$/tCO ₂)
Tabela 4-12: Cálculo do preço de convergência sem considerar a captura do CO ₂ da
fermentação alcoólica
Tabela 4-13: Cálculo do preço de convergência considerando também a captura do CO ₂
da fermentação alcoólica

LISTA DE EQUAÇÕES

Equação 3-1. Custos totais de instalação	34
Equação 3-2. Custos totais diretos da planta	35
Equação 3-3. Custos totais indiretos	35
Equação 3-4. Custos totais de Engenharia, Aquisições e Construção (ISBL&OSBL)	35
Equação 3-5. Cálculo do Capital Total do Projeto	37
Equação 3-6. Ajuste dos custos à capacidade da planta	38
Equação 3-7. Cálculo do total de custos operacionais fixos	39
Equação 3-8. Consumo anual de eletricidade da planta	40
Equação 3-9. Consumo total de combustível da planta	41
Equação 3-10: Cálculo da receita obtida com a venda dos coprodutos	42
Equação 3-11. Cálculo dos custos operacionais variáveis	43
Equação 3-12. Fator de Recuperação do Capital (FRC)	44
Equação 3-13. Cálculo do custo nivelado de eteno	44
Equação 4-1 Cálculo do preço de convergência	62

LISTA DE ABREVIATURAS E SIGLAS

ABIQUIM - Associação Brasileira da Indústria Química

BEC – Bare Erected Cost

CNAE – Classificação Nacional das Atividades Econômicas

CEPEA – Centro de Estudos Avançados em Economia Aplicada

COMPERJ – Complexo Petroquímico do Rio de Janeiro

DOE – *U.S. Department of Energy*

ESALQ - Centro de Estudos Avançados em Economia Aplicada da Escola Superior de

Agricultura Luiz de Queiroz

EPC – Enginnering Procurement and Construction

ETBE – Éter etil-terc-butílico

FCC – Unidade de Craqueamento Fluido Catalítico

GEE - Gases de Efeito Estufa

GLP – Gás Liquefeito de Petróleo

HVC - High-Value Chemicals

IC - Indirect Costs

ISBL – Inside Baterry limits

MCTIC - Ministério da Ciência, Tecnologia, Inovação e Comunicações

MVC - Monocloreto de vinila

NETL – National Energy Technology Laboratory

OCM – Oxidative Coupling of Methane

OSBL - Outside Baterry limits

PE – Polietileno

PET – Poli tereftalato de etila

PQU – Petroquímica União

PVA – Poliacetato de vinila

1. Introdução

1.1 Contextualização do problema

Em novembro de 2015, quase duzentos países aprovaram o chamado Acordo de Paris, um marco internacional que busca reduzir as emissões de gases de efeito estufa (GEE) na atmosfera em quantidade suficiente para manter o aquecimento global abaixo de 2° C, além de aumentar esforços para limitar o aumento da temperatura a 1,5°C. Entre as alternativas para atingir esse objetivo está o aumento do uso de biocombustíveis, que leva a uma redução da emissão total de CO₂, devido à captura de CO₂ da atmosfera durante o crescimento da planta (WORLD BANK GROUP, 2018). A fabricação de produtos químicos a partir do petróleo também reduz as emissões de CO₂, uma vez que funciona como uma captura de carbono na medida em que os combustíveis não são queimados e, a partir destes, são fabricados produtos úteis a sociedade. Entretanto, é possível que para atingir a meta imposta pelo Acordo de Paris sejam necessárias medidas ainda mais severas (UNEP, 2017). A utilização da alcoolquímica propicia uma emissão negativa de CO₂, uma vez que além do fato de o CO₂ ser capturado durante o crescimento da planta, o combustível não é queimado e o CO₂ não é emitido (Milanez, 2017).

O eteno, também conhecido como etileno, possui uma das mais diversificadas árvores de derivados químicos, conferindo a este uma elevada relevância econômica. Segundo dados da Associação Brasileira da Indústria Química (ABIQUIM) (2015), a Braskem possui uma capacidade instalada de 3,95 milhões de toneladas por ano que alimentam a indústria petroquímica de segunda geração. Além disso, é o petroquímico básico mais fabricado, representando cerca de 51% da fabricação de petroquímicos básicos no Brasil. Entre os derivados de eteno, mais conhecidos encontram-se o polietileno (PE), estireno, policloreto de vinila (PVC), poliacetato de vinila (PVA), etilenoglicóis, etanolaminas, e muitos outros (ABIQUIM, 2015).

O eteno é usualmente obtido a partir de nafta petroquímica e/ou gases de refinaria ricos em etano por processo de pirólise (Hatch e Matar, 2001). A indústria de eteno sempre foi dependente dos preços do petróleo e da capacidade total instalada. Segundo o anuário da ABIQUIM (2015), 92% da indústria petroquímica brasileira tem origem da nafta, e apenas 8% do gás natural. A possibilidade de produção de eteno a partir de uma fonte renovável capaz de capturar CO₂ poderia resultar em um diferencial competitivo

para a rota via etanol, em um cenário em que a redução da emissão de gases de efeito estufa gere uma vantagem competitiva a produtos químicos de baixa emissão ou de emissões negativas.

Atualmente, com as pressões internacionais para a redução da poluição industrial, a indústria de olefinas investe em buscar rotas alternativas para a produção de eteno, que diminuam a emissão de gases de efeito estufa e utilizem fontes alternativas de matéria prima (BRASKEM, 2018a).

A desidratação de etanol a eteno é uma opção alternativa à tradicional pirólise de hidrocarbonetos. Recentemente, esta opção passou a ser utilizada em escala industrial, pela Braskem, para produzir o "eteno verde", cuja principal aplicação é a produção do "polietileno verde". A produção de eteno a partir de matéria-prima renovável, especificamente etanol de cana de açúcar, possui um grande apelo na redução da geração de gases estufa, pois, conforme mencionado acima, promove a captura de gás carbônico durante o crescimento da cana de açúcar (BRASKEM, 2018b).

Vale ressaltar que embora a produção de eteno atenue às mudanças climáticas por meio das suas emissões negativas de CO₂, as embalagens plásticas são uns de seus principais subprodutos, e geram um aumento da poluição, uma vez que o Brasil recicla somente 13% dos seus resíduos sólidos urbanos (IPEA, 2018). Dessa forma, o aquecimento global estaria sendo combatido, porém as custas de um aumento da poluição. Nesse sentido, existe um movimento hoje no Brasil de reduzir, ou mesmo extinguir a produção de plásticos descartáveis (ALERJ, 2018; BRASIL, 2018).

No entanto, mesmo que haja uma efetiva redução no uso de embalagens descartáveis, a maior parte do uso de plásticos não seria atingida, como mostra a figura 1-1.

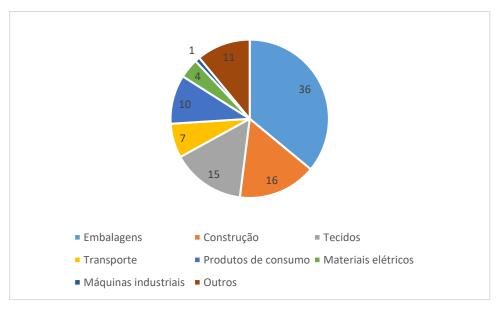


Figura 1-1: Destino final no uso de plásticos

Fonte: Elaboração própria a partir de dados de IEA (2018)

A partir da análise da figura, pode se perceber que mesmo ocorrendo uma queda no uso de embalagens descartáveis, outros setores poderiam absorver a demanda pelo eteno, como, por exemplo, o de construção civil e o têxtil, não representando, portanto, uma ameaça incontornável para o eteno.

Atualmente, é discutida na literatura a questão das biorrefinarias e da transformação da biomassa em materiais, como é o caso do eteno via etanol, por exemplo. Polizeli (2012) analisou a indústria química fóssil e renovável, enfatizando a questão energética durante toda a cadeia produtiva de ambas as rotas. Constatou que o consumo energético da transformação do etanol em eteno é menor do que na pirólise da nafta petroquímica. O processo de obtenção e processamento das matérias-primas renováveis, por sua vez, consome mais energia do que a produção a partir de derivados de petróleo. No entanto, o trabalho não considerou os aspectos econômico-financeiros das rotas fóssil e renovável nem as suas emissões de CO₂.

Ren T. (2009), por sua vez, analisou as principais rotas de produção de petroquímicos, considerando, além do aspecto energético, também aspectos econômicos e de inovação com o passar do tempo. Concluiu que as rotas a partir de matéria-prima renovável têm o potencial técnico e econômico para auxiliar a indústria petroquímica no combate às mudanças climáticas e na questão da segurança energética. Entretanto, seu trabalho não aborda detalhadamente o caso do eteno nem a possibilidade de ganho de competitividade do eteno verde a partir da valoração das emissões de CO₂.

Dessa forma, ainda falta à literatura, particularmente no caso do eteno, a análise do possível ganho de competitividade dos produtos petroquímicos oriundos da biomassa com a valoração das emissões de CO₂. O Brasil, por ser um grande produtor de etanol a partir da cana-de-açúcar, poderia ser um grande produtor de eteno verde, ajudando no combate às mudanças climáticas, que vem sendo uma preocupação crescente no mundo (WORLD BANK GROUP, 2018). É essa a análise que se pretende fazer neste trabalho, verificando também a possível exportação do eteno verde brasileiro.

1.2 Objetivo da dissertação e estrutura do desenvolvimento

O objetivo deste trabalho é comparar as rotas de produção de eteno via nafta e via etanol e, a partir dessa análise, determinar as condições para que o eteno via etanol (eteno verde) possa competir com a rota via nafta, que é a mais utilizada hoje no Brasil. Será calculado também o valor de *breakeven* de emissão do CO₂ – ou o valor em que as rotas alcoolquímica e via nafta passariam a ter custos totais equivalentes. Além disso, será analisado em que medida a valoração de carbono pode vir a introduzir o eteno verde no Brasil e em outros mercados no mundo, particularmente no mercado chinês. Serão considerados nesse cálculo os custos do frete do eteno até a China e as emissões causadas pelo mesmo. Esse mercado foi escolhido devido ao constante crescimento da economia chinesa e da sua parceria comercial com o Brasil. Em 2017, por exemplo, o Brasil exportou 47,4US\$ bilhões em produtos para a China, 35,1% a mais que em 2016 (MDIC, 2018). Além disso, caso seja constatada a viabilidade do transporte do eteno para a China (tanto a nível de custos quanto de emissões de CO₂), o transporte também seria viável para praticamente todos os outros países do mundo, devido ao fato de a China ser um dos países mais distantes do Brasil. A hipótese subjacente a se testar aqui é que a indústria de eteno verde poderia levar a uma vantagem competitiva ao Brasil, desde que se valore o CO₂ evitado por esta rota.

Para isso, inicialmente será feito no capítulo 2 uma análise dos aspectos gerais da indústria petroquímica e da estrutura da indústria petroquímica brasileira. Ainda no capítulo 2, será feita uma descrição detalhada das rotas de produção de eteno via nafta e via etanol.

Em seguida, no capítulo 3, será descrita a metodologia para a realização da análise financeira das duas rotas. Será descrito também o cálculo do custo e das emissões do frete do Brasil para a China.

No capítulo 4 serão apresentados e discutidos os resultados da análise econômica e financeira das duas rotas. Em seguida, esses resultados serão comparados e será feita uma análise de sensibilidade com parâmetros críticos de ambas as rotas. Posteriormente, serão consideradas as emissões (positivas e negativas) de ambas as rotas e será calculado o preço de convergência, ou seja, o preço por tonelada de CO₂ emitido no qual o custo de ambas as rotas se torna equivalente. Finalmente, serão apresentados os resultados sobre a possível introdução do eteno brasileiro via etanol no mercado chinês, considerando os custos e as emissões do transporte calculados no capítulo anterior.

Por fim, no capítulo 5, serão apresentadas as conclusões do trabalho e as sugestões para trabalhos futuros.

2. Estado da arte da indústria petroquímica brasileira

Este capítulo será dividido em três partes. Primeiramente, serão apresentados

aspectos gerais da indústria petroquímica. Em seguida, será descrita a estrutura da

indústria petroquímica brasileira. Finalmente, será feita uma descrição detalhada das rotas

de produção de eteno via nafta e via etanol.

2.1 Aspectos gerais da indústria petroquímica

A indústria petroquímica abrange uma grande diversidade de produtos, desde os

denominados petroquímicos básicos, ou de 1ª geração até os produtos de 3ª geração.

Compreende o conjunto de atividades industriais entre o refino do petróleo e a

transformação de plásticos e as atividades ligadas à química fina. É constituída por uma

sucessão de processos industriais, em que são produzidos insumos para serem utilizados

nas fases subsequentes.

Os produtos fabricados a partir da indústria petroquímica são utilizados em

diversas outras indústrias, tais como: tintas, calçados, alimentos, borracha, bens de

consumo duráveis, e muitas outras. Os insumos da indústria petroquímica são obtidos a

partir do refino do petróleo ou no processamento do gás natural. A partir do petróleo são

obtidos nafta, gasóleo, gases de refinaria e gases liquefeitos do petróleo. No caso do gás

natural, o principal derivado obtido é o etano. Segundo a CNAE (Classificação Nacional

de Atividades Econômicas), os produtos fabricados pela petroquímica podem ser

divididos em seis níveis:

Fabricação de produtos petroquímicos básicos;

- Fabricação de intermediários para plastificantes, resinas e fibras;

- Fabricação dos demais produtos químicos orgânicos

- Fabricação de resinas termoplásticas;

- Fabricação de resinas termofixas;

- Fabricação de elastômeros.

Fonte: (CADERNO SETORIAL ETENE, 2017)

A cadeia petroquímica se inicia com a primeira geração, onde são produzidos os

produtos petroquímicos básicos, ou seja, eteno, propeno, butenos e BTXs (benzeno,

6

tolueno e xileno). Esses produtos não são usados diretamente e servem de insumo para a indústria petroquímica de segunda geração, que é constituída basicamente por produtoras de resinas termoplásticas e por intermediários. Esses produtos servem como insumos para as indústrias de terceira geração, que são industrias de transformação plástica. Nela, os produtos de segunda geração são transformados em materiais e produtos utilizados em diversos segmentos, tais como civil, elétrico, eletrônico, embalagens e automotivo (MOREIRA, 2008). Um esquema geral da cadeia petroquímica pode ser encontrado na figura 2-1.

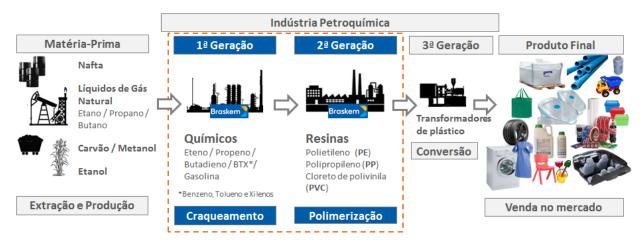


Figura 2-1: Esquema geral da cadeia petroquímica Fonte: Braskem (2018a)

Os polos petroquímicos geralmente são formados por indústrias de primeira e de segunda gerações, podendo ou não fazer parte de uma mesma empresa. Quanto maior for a integração vertical dentro das empresas, maiores as economias de escala e de escopo.

As unidades ou empresas de primeira de geração produzem os produtos petroquímicos básicos (eteno, propeno, butenos e BTXs), além de serem obtidos solventes e combustíveis como produtos secundários. Estas unidades são denominadas de centrais petroquímicas e, por questões de logística, costumam se localizar próximo das suas fontes de matérias-primas, ou seja, dos campos de produção de gás natural e das refinarias de petróleo.

As empresas/unidades de segunda geração são responsáveis pela produção de resinas termoplásticas tais como polietileno e polipropileno, além de intermediários resultantes do processamento dos produtos primários, como o estireno, acetato de vinila, oxido de propeno, fenol, ácido acrílico, MVC (monocloreto de vinila), entre outros. Esses produtos intermediários passam por uma transformação para a obtenção de produtos

finais petroquímicos, tais como poliestireno, PVC, resinas termoestáveis, elastômeros, poliuretanas, bases para detergentes sintéticos e tintas, entre outros. Devido à dificuldade de transporte dos produtos petroquímicos básicos, uma vez que se tratam de gases e líquidos inflamáveis, e aos grandes volumes envolvidos, as unidades de segunda geração costumam se localizar próximas das unidades de primeira geração, formando assim os polos petroquímicos.

A terceira geração petroquímica realiza a transformação plástica. É formada por um grande número de empresas, geralmente de pequeno porte, que se localizam perto do consumidor final, atendendo diversos setores. As empresas de terceira geração fabricam as resinas plásticas diretamente para o consumidor final ou para outras empresas. São produzidos, dentre outros produtos: materiais para a construção civil, embalagens, peças de automóvel, fibras têxteis. Dessa forma, as empresas têm se diferenciado e se especializado no atendimento de cada um desses setores (embalagens, construção civil, automobilístico, etc.) (MOREIRA, 2008).

Os produtos do setor químico podem ser divididos em 4 categorias: *commodities*, *pseudo commodities*, produtos de química fina e especialidades químicas

(WONGTSCHOSWKI, 2002). Os produtos petroquímicos pertencem as duas primeiras categorias. As *commodities* são produtos químicos que tem sua produção feita em larga escala, utilizadas para diversas aplicações, normalmente tem um pequeno número de clientes e com especificações padronizadas. O eteno faz parte dessa categoria, além do metanol, propeno e de outros gases industriais. As *pseudo commodities* também possuem um elevado volume de vendas. Entretanto, se diferenciam das *commodities* por terem sua comercialização feita baseada em suas especificações de desempenho, mesmo que venham a possuir a mesma composição química. Os elastômeros e as resinas termoplásticas são exemplos de *pseudo commodities* (GOMES et al, 1999).

A nafta é a matéria-prima mais utilizada na indústria petroquímica, podendo gerar um grande número de derivados. Em contrapartida, a utilização do gás natural como matéria-prima, que é a segunda mais utilizada, produz apenas derivados do eteno e propeno, não produzindo aromáticos. As plantas baseadas em nafta são mais complexas que as plantas que utilizam gás natural, necessitando assim de maiores investimentos para serem implementadas. Outras matérias-primas como gás liquefeito do petróleo (GLP), gasóleo e condensados são menos expressivos para a indústria petroquímica a nível de consumo (MOREIRA, 2008).

Em termos de competitividade, os fatores mais importantes para a indústria petroquímica são a disponibilidade de matéria-prima, a escala de produção, acesso à tecnologia, custo de capital e acesso ao mercado consumidor. Atualmente, a Ásia lidera a produção de HVC (*high-value chemicals*)¹ e representa cerca de 48% da produção global, seguida pela América do Norte e pelo Oriente Médio (IEA, 2018). As projeções da IEA (2018) para 2030 e 2050 apontam no mesmo sentido, embora mostrem um crescimento mais expressivo da Ásia e do Oriente Médio, respectivamente.

2.2 Estrutura da indústria petroquímica brasileira

Até a década de 1960, o Brasil possuía apenas algumas instalações isoladas para a produção de resinas plásticas. É o caso da Bakol e da Koppers, que produziam poliestireno a partir de matéria-prima importada. No final da década de 1950, com a criação da Petrobrás, a refinaria Presidente Bernardes, em Cubatão (SP), iniciou o fornecimento de eteno. Isso possibilitou a instalação de empresas do ramo petroquímico na cidade. Foi o caso da Copebrás, Union Carbide, e da Companhia brasileira de Estireno.

O setor petroquímico brasileiro foi formado segundo o modelo de tripartite na década de 1970, utilizado pela primeira vez na petroquímica União. Neste modelo, as empresas eram formadas por três partes: o Estado, representado pela Petroquisa, um grupo capitalista nacional e um outro internacional, que fornecia a tecnologia de produção. Esse modelo conferia ao setor uma estrutura pulverizada com um grande número de empresas e um arranjo societário peculiar conhecido como "nó petroquímico", devido à complexidade de cruzamentos entre acionistas das diferentes empresas (MOREIRA, 2008).

A iniciativa governamental foi o grande impulso para o desenvolvimento da indústria petroquímica no Brasil. Nesse sentido, foram criados três polos petroquímicos no país: em Capuava (SP), em Camaçari (BA) e em Triunfo (RS). Em cada um desses polos foi construída uma central de matérias-primas. Essas centrais são, respectivamente, Petroquímica União, Copene (atual Braskem Insumos Básicos) e Copesul. Foram instaladas também diversas empresas de segunda geração ao redor dessas centrais (TEIXEIRA, 2015).

-

¹ High-value chemicals (HVCs) se refere aos produtos obtidos pelo craqueamento a vapor da nafta.

A partir dos anos 1990, o setor passou por uma profunda transformação. Em primeiro lugar, houve a saída do capital estatal, parte fundamental do modelo de tripartite adotado na formação da indústria petroquímica no país. Além disso, houve uma reorganização da participação societária das empresas e uma alta concentração com a criação da Braskem, que era uma central de matérias-primas e produtora de resinas como PVC, polietileno, polipropileno e poli tereftalato de etila (PET).

Além da reestruturação societária, o setor passou a receber investimentos diferentes dos feitos nas décadas de 1970 e 1980, uma vez que foram preparados para se utilizar gás natural como matéria-prima ao invés da nafta petroquímica, que era a utilizada até então nos polos existentes. Um desses investimentos foi a criação do Rio Polímeros em 2006, em Duque de Caxias (RJ). O projeto é o único complexo petroquímico integrado do país, englobando a primeira e a segunda geração (o eteno e o polietileno) em um mesmo complexo (TEIXEIRA, 2015).

Após as privatizações das participações da Petrobrás nas empresas, estas passaram, em sua maioria, a ter controle nacional, e iniciou-se um longo processo de fusões e aquisições. Em 2005, seis principais grupos nacionais atuavam no setor: Odebrecht (através da Braskem), Suzano, Ipiranga, Unipar, Ultra e Unigel. Além destas empresas, haviam empresas multinacionais que atuavam no país em segmentos específicos. Em seguida, as empresas Ultra e Unigel passaram a se concentrar em especialidades enquanto os grupos Ipiranga e Suzano se retiraram do setor (GOMES, 2011).

Esse processo de reestruturação aumentou a competitividade da indústria petroquímica brasileira. Houve também uma expansão da capacidade de produção de diversos produtos. Em relação aos produtos petroquímicos básicos, as principais extensões foram a duplicação da central de Triunfo (RS), a implantação da unidade integrada do Rio Polímeros, e a construção da unidade de extração de propeno em refinarias da Petrobras para a produção de polipropileno em Paulínia e Mauá (PERRONE, 2010).

Nos anos 2000, os bons resultados econômico-financeiros e o ciclo de alta de preços petroquímicos contribuíram para a consolidação das empresas nacionais. A Suzano Petroquímica adquiriu a participação da Basell na produção de polipropileno, se tornando a maior produtora do país. Posteriormente, foi vendida para a Quattor. Além disso, a Braskem incorporou mais de dez unidades industriais em uma única empresa.

Finalmente, em 2010, houve a aquisição da Quattor, que antes era controlada pelo grupo Unipar, pela Braskem. Com essa aquisição, a Braskem se tornou a 8a maior produtora mundial de resinas termoplásticas (GOMES, 2011).

Atualmente, a indústria petroquímica brasileira ficou dividida basicamente entre 4 polos: o polo de Capuava (SP), o de Camaçari (BA), o de Triunfo (RS) e o Rio Polímeros (RJ).

O polo de Capuava (SP) tinha antigamente a PQU (Petroquímica União) como responsável pela sua central de matérias-primas. Sua localização era uma grande vantagem, uma vez que se encontrava perto dos maiores mercados consumidores e das principais refinarias do país. No entanto, suas plantas possuem defasagem tecnológica em relação as demais, além de não possuírem um terminal próprio para a importação da nafta (BRASKEM, 2018c). Sua capacidade instalada pode ser encontrada na tabela 2-1.

Tabela 2-1: Capacidade instalada do polo petroquímico de São Paulo

Produto	Capacidade instalada (kt/ano)
Eteno (130 kt base gás e 570 kt base nafta)	700
Propeno	300
Benzeno	255
Butadieno	91
Isobuteno	20
Tolueno	60
Gasolina	150
Alquilbenzenos	20
Xileno Misto	50
Ortoxileno	50
GLP	60
Óleo Combustível	25
Resíduo Aromático	120
Resinas de Petróleo	15
Cumeno	320
Noneno / Tetrâmero	28

Fonte: Braskem (2018c).

A capacidade instalada dessa planta é menor em relação as outras, gerando uma perda de competitividade da mesma. Além disso, não havia integração com as empresas de segunda geração que consumiam os seus produtos. No entanto, após um acordo entre os principais acionistas nacionais, essa integração atualmente é feita pela Braskem (SIMÃO, 2014).

O polo petroquímico de Camaçari (BA) reúne mais de 90 empresas ligadas à área petroquímica. A capacidade instalada da planta encontra-se na tabela 2-2.

Tabela 2-2: Capacidade instalada do polo petroquímico da Bahia

Produto	Capacidade instalada (kt/ano)
Eteno (base nafta com 15% gas-flex)	1280
Propeno	550
Butadieno	180
Benzeno	427
Tolueno	42
Ortoxileno	62
Paraxileno	203
Xileno Misto	50
Buteno 1	36
Éter etil-terc-butílico (ETBE)	195
Isopreno	26
Gasolina	450

Fonte: Braskem (2018c)

Ao contrário do polo petroquímico paulista, o polo possui integração com empresas de segunda geração e o aumento de sua capacidade instalada lhe confere maior competitividade. A sua central de matérias-primas hoje pertence a Braskem. No entanto, historicamente, apenas 70% da matéria-prima vem da Petrobras. O restante é importado principalmente da América do Sul e da África.

O polo petroquímico de Triunfo (RS) é a antiga Copesul, e atualmente pertence a Braskem. O polo processa predominantemente a nafta, embora também utilize gás condensado e GLP. Isso lhe confere uma vantagem em relação aos outros polos, uma vez que é possível se utilizar mais condensado (matéria-prima mais barata e disponível no mercado internacional) em detrimento da nafta. Outra vantagem desse polo é o fato de este se encontrar próximo a Argentina, facilitando a importação de matérias-primas e a exportação de produtos. É nesse polo que ocorre a produção de eteno a partir do etanol. A capacidade instalada da planta encontra-se na tabela 2-3.

Tabela 2-3: Capacidade instalada do polo petroquímico de Triunfo (RS)

Produto	Capacidade instalada (kt/ano)
Eteno (base nafta)	1252
Eteno Verde	200
Propeno	660
Butadieno	209
Benzeno	287
Tolueno	93
Xileno Misto	79
Buteno 1	60
ETBE	179
Gasolina	270

Fonte: Braskem (2018c)

A Rio Polímeros passou a ser uma subsidiária integral da Braskem com a incorporação da Quattor pela Braskem. A empresa se tornou então a única empresa petroquímica de primeira geração do país, controlando as quatro centrais de matérias-primas brasileiras. A central está localizada próxima a Reduc, em Duque de Caxias (RJ), perto de um grande mercado consumidor e de rodovias, portos e ferrovias, que lhe conferem grande vantagem competitiva. O polo processa somente gás natural, produzindo apenas eteno, propeno e gasolina de pirólise. Sua capacidade instalada encontra-se na tabela 2-4 (SIMÃO, 2014).

Tabela 2-4: Capacidade instalada da Rio Polímeros

Produto	Capacidade instalada (kt/ano)
Eteno (base gás)	520
Propeno	75
Gasolina	19

Fonte: Braskem (2018c)

Além destes polos, existe ainda o COMPERJ (Complexo Petroquímico do Rio de Janeiro), que é um projeto da Petrobrás de uma unidade de refino integrada a um complexo petroquímico na cidade de Itaboraí (RJ). O projeto tinha o objetivo original de produzir produtos nobres da segunda geração petroquímica a partir do petróleo do campo de Marlim (norte do Estado do Rio de Janeiro). A figura 2-2 mostra as unidades produtivas do COMPERJ no seu projeto inicial e as suas respectivas quantidades que seriam produzidas.

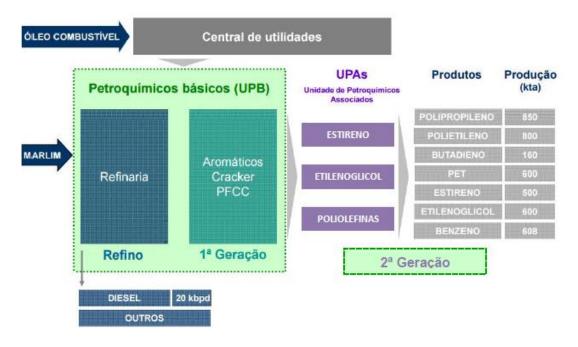


Figura 2-2: Esquema geral do projeto inicial do COMPERJ Fonte: OBERLAENDER (2016)

Entretanto, no ano de 2010 a Petrobrás decidiu aumentar a sua capacidade de refino construindo um segundo trem de refino. Isso aconteceu devido ao aumento significativo da demanda de Diesel e de querosene de aviação (QAV) no país. Além disso, a Petrobras anunciou em 2011 que o COMPERJ iria utilizar o gás natural do pré-sal como combustível e matéria-prima. A figura 2-3 mostra a nova configuração do COMPERJ após as modificações acima.

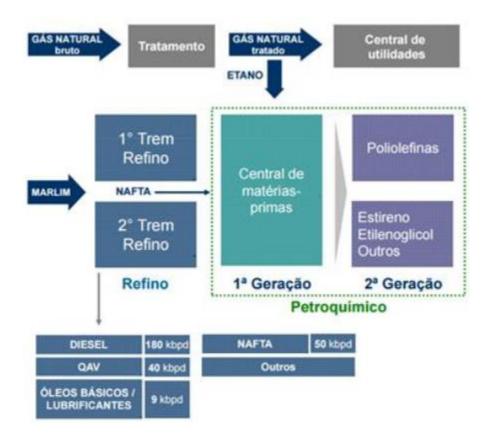


Figura 2-3: Nova configuração do COMPERJ após as modificações feitas pela Petrobrás

Fonte: Oberlaender (2016)

No entanto, as obras nos dois trens de refino foram suspensas no final de 2014, embora já tivesse consumido cerca de US\$13,5 bilhões, o que corresponde ao dobro do investimento inicial previsto. A única obra mantida pela Petrobrás foi a unidade de processamento de gás natural (UPGN), que tem inauguração prevista para 2020 (PETROBRÁS, 2018).

Vale ressaltar, no entanto, que a indústria química brasileira nas últimas duas décadas foi deficitária em sua balança comercial, como se pode observar na figura 2-4.

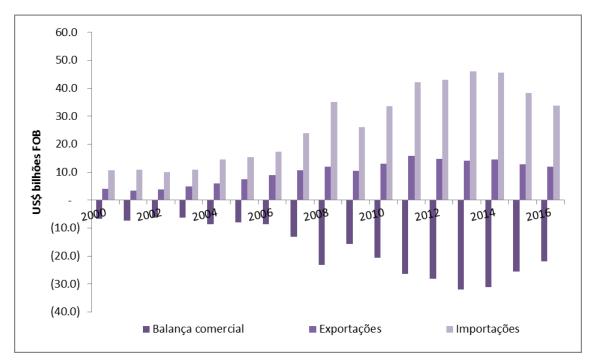
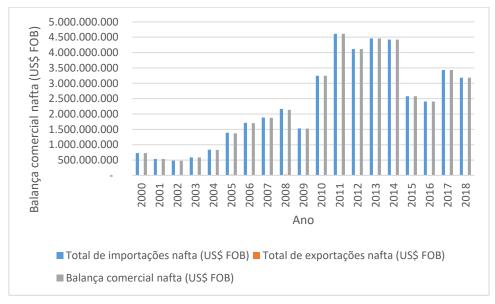



Figura 2-4: Balança comercial da indústria química brasileira

Fonte: Schaeffer et al. (2017)

Este déficit vem aumentando significativamente desde o ano 2000, atingindo o seu maior valor em 2013.

Ao se observar especificamente o caso da nafta, chega-se a uma conclusão semelhante, como mostra a figura 2-5.

Figura 2-5: Balança comercial brasileira para a nafta Fonte; Elaboração própria a partir de ANP (2018)

A produção brasileira de nafta também vem caindo nos últimos anos, como mostra a figura 2-6.

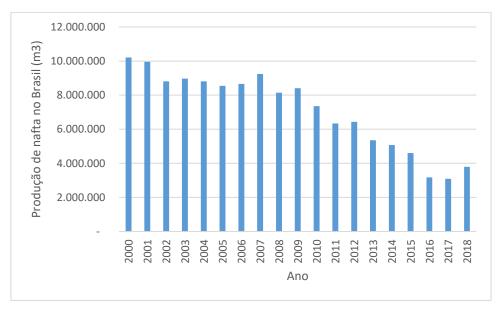


Figura 2-6: Produção de nafta no Brasil

Fonte: ANP (2018)

A análise dos gráficos acima evidencia um aumento da participação do consumo da nafta importada no Brasil e a perda de competitividade da nafta na indústria petroquímica brasileira. Diante dessa situação, a indústria petroquímica brasileira precisa buscar oportunidades para se reerguer. No caso do eteno, especificamente, a produção brasileira chega a atender praticamente todo o seu mercado interno, como mostra a tabela 2-5.

Tabela 2-5: Produção e vendas de eteno no Brasil

Ano	Produção(t/ano)	Vendas internas	Exportação (t)	Importação
		(t/ano)		(t)
2010	3.276.627	3.259.122	9.853	22
2011	3.131.282	3.127.413	7.737	9
2012	3.171.465	3.169.459	8.059	11
2013	3.372.826	3.369.227	3.599	4.453
2014	3.237.888	3.226.049	10.141	4402

Fonte: ABIQUIM (2015)

No entanto, o eteno brasileiro perde competitividade em nível mundial devido à alta volatilidade do preço da nafta e pelo fato de o Brasil precisar importar nafta para

produzi-lo. Vale ressaltar também que a escala de produção do Brasil é menor que a da China e do Oriente Médio (IEA, 2018). Além disso, a rota via nafta é uma grande emissora de CO₂, e as crescentes preocupações mundiais com o meio ambiente, principalmente após o acordo de Paris, podem fazer com que a rota de eteno via etanol ganhe competitividade em detrimento do eteno via nafta, caso haja uma valoração das emissões de CO₂ evitadas no Brasil.

Vale ressaltar que o Brasil é um grande produtor de etanol, que, conforme visto anteriormente, também pode servir como insumo para a produção de eteno. Essa rota alternativa, além de não exigir a importação de nafta, é benéfica para o meio ambiente, uma vez que pode capturar CO₂ da atmosfera durante o crescimento da planta. Dessa forma, a rota de produção de eteno via etanol poderia ganhar competitividade caso as emissões de CO₂ evitadas venham a ser valoradas no Brasil, uma vez que esta ganharia créditos por gerar emissões negativas de CO₂. Dependendo do valor a ser pago por tonelada de CO₂ evitada, o eteno verde brasileiro poderia ainda atingir outros mercados no mundo, uma vez que apenas o Brasil e os Estados Unidos efetuam a produção do etanol em larga escala. Além disso, a produtividade da cana de açúcar no Brasil é superior à do milho, que é utilizada nos EUA, tornando a planta de eteno brasileira a partir do etanol ainda mais competitiva (MENDONÇA; LEAL JUNIOR, 2010).

2.3 Descrição das rotas de produção de eteno

2.3.1 Via nafta

Na primeira parte desta seção será detalhado o processo de produção de eteno via nafta. Foram encontrados diversos processos semelhantes: o da ABB Lummus Global, o da Kellogg Brown & Root, o da Linde AG, o da Stone & Webster Inc., e o da Technip. Neste trabalho será detalhado o processo da ABB Lummus Global, por ser o mais comum e o atualmente utilizado no Brasil. Em seguida, será feita uma análise técnica da rota como um todo, visando discutir seus parâmetros técnicos, como rendimento, consumo e produção de eletricidade e emissões de CO₂.

2.3.1.1 Descrição do processo da ABB Lummus Global

A maior utilização deste processo é para a fabricação de polietileno. Entretanto, produz também subprodutos como o propeno ou polipropileno, butadieno, gasolina rica em aromáticos e hidrogênio de alta pureza. O fluxograma geral do processo está descrito na figura 2-7.

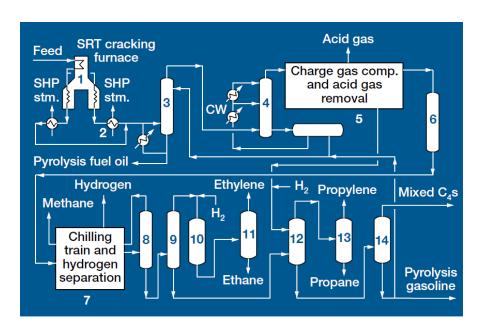


Figura 2-7: Esquema do processo da ABB Lummus Global de produção de eteno via nafta Fonte: ABB LUMMUS GLOBAL (2005)

O processo é iniciado com a alimentação de hidrocarbonetos pré-aquecidos em um forno de pirólise de curto tempo de residência (1), o que propicia um alto rendimento em olefinas. Os produtos saem do forno a uma temperatura que varia de 815 a 870°C e são rapidamente resfriados em trocadores de calor (2). Em seguida, seguem para um fracionador de gasolina, onde a fração pesada do óleo é removida da gasolina e das frações mais leves. O restante do resfriamento dos produtos é feito por uma torre de resfriamento com água. A próxima etapa é a compressão do gás que sai da torre de resfriamento em um compressor centrífugo de vários estágios (5). O gás comprimido é então secado e resfriado (6). Hidrogênio é recuperado no trem de resfriamento (7) e alimenta o demetanizador (8). O demetanizador opera a cerca de 100psia, fornecendo uma elevada eficiência energética. O fundo do demetanizador vai para o desetanizador (9).

O acetileno no desetanizador é hidrogenado (10) ou recuperado. O vapor de etano e etileno é fracionado (11) e o etileno de grau polimérico é recuperado. O etano que sai como produto de fundo do fracionador de etileno é reciclado e desidrogenado até a sua extinção.

Os fundos do desetanizador e do separador de condensados do sistema de compressão segue para o processo de depropanização (12). Metilacetileno e propadieno são hidrogenados no depropanizador, cujos produtos de fundo são separados entre uma mistura de C₄ e correntes leves de gasolina (14). Além disso, polímeros de propileno são recuperados no fracionador de propileno (ABB LUMMUS GLOBAL, 2005).

A tabela 2-6 mostra o rendimento, em porcentagem mássica ao se tentar maximizar a produção de etileno dependendo da fonte de alimentação.

Tabela 2-6: Rendimento dos produtos do processo da ABB Lummus Global em função da fonte de alimentação

Alimentação	Etano	Propano	Butano	Nafta	Gasóleo leve	Gasóleo pesado	Gasóleo vácuo
Eteno	84,0	45,0	44,0	34,4	28,7	25,9	22,0
Propeno	1,4	14,0	17,3	14,4	14,8	13,6	12,1
Butadieno	1,4	2,0	3,0	4,9	4,8	4,9	5,0
Aromáticos	0,4	3,5	3,4	14,0	16,6	13,3	13,0

Fonte: ABB LUMMUS GLOBAL(2005)

O consumo de energia desse processo é de 3300kcal/kg de etileno produzido para o craqueamento do etano e de 5000kcal/kg para uma alimentação de nafta. Cerca de 40% das plantas de etileno no mundo utilizam essa tecnologia da Lummus (ABB LUMMUS GLOBAL, 2005).

2.3.1.2 Análise técnica

Nesta seção serão analisados os aspectos técnicos da rota de produção de eteno a partir da nafta. São eles: preço da nafta, rendimento do processo, a produção e o consumo de eletricidade e as emissões de CO₂.

O preço da nafta é extremamente volátil no mercado internacional, podendo afetar significativamente o custo de produção do eteno. O menor preço da nafta nos últimos 10 anos foi de 250US\$/tonelada em 2009, enquanto que o maior foi de cerca de 1100US\$/tonelada em 2008, mostrando a grande variação do preço da nafta. O histórico do preço da nafta nos últimos 10 anos pode ser encontrado na figura 2-8.

Figura 2-8: Histórico do preço da nafta nos últimos 10 anos

Fonte: Trading economics (2018)

O rendimento da produção de eteno a partir da nafta varia significativamente de acordo com a fonte pesquisada. Bastos (2009) afirma que o rendimento seria de cerca de 27%. Já a patente da ABB Lummus Global, conforme descrito acima, indica um rendimento máximo de 34,4% de eteno para o caso da nafta. A Technip e a Linde AG também indicam um rendimento de 35,0% em seus processos (HYDROCARBON

PROCESSING, 2005). No entanto, o estudo de Fattouh e Brown (2014), da Universidade de Oxford, considera um rendimento de 30%, conforme mostra a tabela 2-7.

Tabela 2-7: Rendimento de produtos do processo de craqueamento a vapor em função da alimentação

Rendimento	Etano(%)	Propano(%)	Butano(%)	Nafta(%)	Gasóleo(%)
em base					
mássica					
Hidrogênio	13	28	24	26	18
e metano					
Etileno	80	45	37	30	25
Propileno	2	15	18	13	14
Butadieno	1	2	2	5	5
Mistura de	2	1	6	8	6
butenos					
C5+	2	9	13	8	7
Benzeno	0	0	0	5	5
Tolueno	0	0	0	4	3
Óleo	0	0	0	2	18
combustível					

Fonte: Fattouh e Brown (2014)

Quanto ao consumo de eletricidade, analisou-se o estudo de Spallina et al. (2017), que estimava o consumo de energia elétrica de cada equipamento da planta, como mostra a tabela 2-8.

Tabela 2-8: Consumo de eletricidade da planta de nafta, considerando uma vazão de 31,86kg/s de eteno

Equipamento	Consumo de eletricidade (MW)			
Ciclo de vapor	321,12			
Expansor	2,97			
Compressor de gás	-38,92			
Ciclo de refrigeração	-195,07			
Ventiladores	-20,71			
Rejeição de calor	-7,22			
Total	62,17			

Fonte: Elaboração própria a partir de SPALLINA et al (2017)

O sinal positivo na tabela acima indica que a planta produziu eletricidade no seu ciclo a vapor, enquanto que os sinais negativos indicam os equipamentos nos quais a planta consumiu energia elétrica. O maior gasto de energia elétrica da planta foi com o seu ciclo de refrigeração, seguido pelo compressor de gás e pelos ventiladores. No entanto, a produção de energia no ciclo a vapor supera significativamente os seus gastos, fazendo com que a planta possa vender seu excedente de eletricidade. Como a planta tinha uma vazão de saída de eteno de 31,86 kg/s, isso significa uma venda de 0,6 MWh por tonelada de eteno produzida.

Para determinar a emissão de CO₂ do processo, foram observados dois parâmetros: o fator de emissão da nafta, em tCO2/TJ, e o consumo energético do processo, em GJ/tonelada de eteno produzida.

Para o fator de emissão da nafta, foi consultado o guia para inventário de emissão de gases do efeito estufa do IPCC, que estipulava valores entre 69,3 e 76 t CO₂ / TJ, e estabeleceu um valor padrão de 73,3t CO₂ / TJ (IPCC, 2006).

Quanto ao consumo energético do processo, Ren T. (2009) fez uma análise detalhada do consumo energético de diversos processos para produção de petroquímicos. O valor médio obtido por ele foi de 22GJ/tonelada de etileno produzida, enquanto que no estado da arte, esse valor chegou a 12GJ/tonelada. A publicação Hydrocarbon Processing,

na edição de 2005 também indicava valores que variavam entre 17 e 25 GJ/tonelada de etileno. É importante observar que esses valores não levam em conta o processo de produção da nafta em si, apenas a sua transformação em etileno. No entanto, Ren T. (2009) estipulou o consumo de energia do processo de produção da nafta como sendo de 4 GJ/ tonelada de nafta em média, e de 3 GJ/tonelada no estado da arte.

Multiplicando os valores dos dois parágrafos acima, e aplicando as devidas conversões, chegou-se a uma emissão de CO₂ de 0,83 a 1,90 toneladas de CO₂ por tonelada de etileno produzido.

2.3.2 Via etanol

Nesta seção será feita a descrição da rota de produção de eteno via etanol e a sua respectiva análise técnica. Essa rota possui a vantagem de ter um insumo que pode ser produzido a partir de uma rota biológica utilizando biomassa. O chamado Etanol de 1ª geração, produzido por fermentação de açúcar ou glicose de amido, já apresenta uma indústria bem estabelecida e o Brasil é um grande produtor, tendo atingido uma produção de cerca de 28 milhões de m³ em 2016 (BEN, 2017). No Brasil, quase todo o Etanol é produzido a partir da cana-de-açúcar, porém em outros países outras culturas são utilizadas, como é o caso do milho nos EUA. A produção de etanol pode ser ainda expandida por outra rota, de 2ª geração, a partir de um processo de decomposição de matéria lignocelulósica da biomassa. Entretanto, os preços do etanol dessa rota ainda são muito elevados.

O primeiro passo para a produção de bioetileno é a produção do etanol via biomassa. Primeiramente, a biomassa precisa ser tratada para que o açúcar possa ser extraído. Esse tratamento varia dependendo do tipo de biomassa que é utilizada. Em seguida, ocorre a fermentação e a glicose reage formando o etanol conforme a equação a seguir:

$$C_6H_{12}O_6 --> 2 C_2H_5OH + 2 CO_2$$

A solução formada após a fermentação contém em torno de 12% de etanol, e, nesse ponto, a fermentação é interrompida devido ao efeito tóxico do etanol sobre as leveduras. Em seguida, álcool a 96% é obtido via destilação. Se o etanol fosse ser usado como combustível, seria necessária uma concentração de 98,7% m/m, e a água residual

deveria ser removida por desidratação devido a formação do azeótropo (DECHEMA, 2017).

Em seguida ocorre a produção de etileno, utilizando o bioetanol produzido como matéria-prima. A tecnologia de desidratação do etanol é bem conhecida e relativamente simples. As primeiras unidades industriais surgiram a partir da década de 1960 e foram desativadas ao longo do tempo devido à volatilidade dos preços do etanol (SEIDL et al., 2012). Trata-se de um processo cuja capacidade típica atual varia de 5 a 200 mil toneladas por ano. A reação química envolvida é de etapa única, endotérmica e reversível. O seu equilíbrio favorece a formação de produtos a temperaturas elevadas (reação endotérmica) e a baixas pressões (mais moles de produtos do que de reagentes). A reação pode ser representada pela equação abaixo.

$$C_2H_5OH \leftrightarrow C_2H_4 + H_2O$$
 $\Delta H = 383 \text{ kcal / kg eteno}$

As unidades industriais operam com reciclo do etanol não convertido. A conversão típica é de 99%. As Figura 2-9 e 2-10 mostram os fluxogramas de processo de desidratação do etanol, seu respectivo tratamento cáustico e seu sistema de purificação para obtenção do eteno (POLIZELI, 2012).

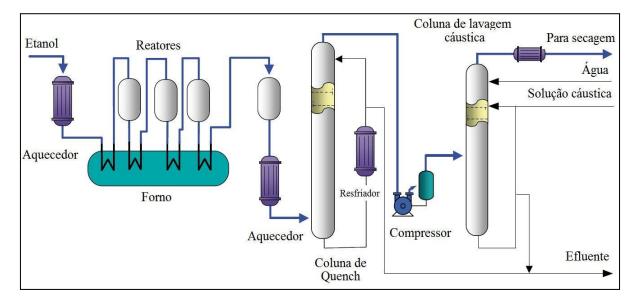


Figura 2-9: Fluxograma do processo de desidratação de etanol Fonte: POLIZELI, 2012

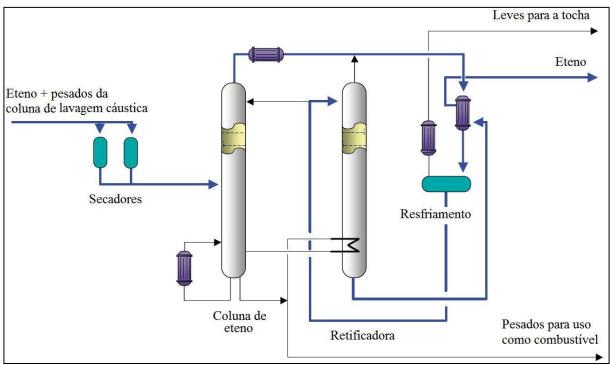


Figura 2-10: Seção de tratamento do eteno

Fonte: POLIZELLI (2012)

O consumo energético deste processo é de 2 GJ/t, segundo Ren T. (2009). Esse valor é da mesma ordem de grandeza que os processos descritos por alguns licenciadores, podendo variar de 2 a 5 GJ/t. O principal consumo energético neste processo se deve ao fato de a reação ser endotérmica. Apenas para que ocorra a desidratação do etanol, mostrada na equação (1), são necessários 1,6 GJ/t de eteno produzido, correspondendo à grande maioria do consumo energético da planta. O bioetileno é produzido pela desidratação do etanol com um catalisador de alumina ou sílica-alumina a 300°C em um reator de leito fixo ou fluidizado. Além disso, é necessária uma separação gasosa para remover subprodutos gasosos e uma lavagem alcalina para remover produtos oxigenados. Para produzir 1 tonelada de bioetileno são necessárias 1,74 toneladas de etanol hidratado. Para toda a cadeia do processo, incluindo a produção de 1,74 toneladas de etanol, seriam necessários 85,5 GJ/tonelada de etileno produzido (DECHEMA, 2017). O processo está esquematizado na figura 2-11.

Figura 2-11: Esquema do processo para a produção de bioetileno Fonte: Dechema (2017)

O polietileno verde é produzido no Polo Petroquímico de Triunfo, no Rio Grande do Sul (RS), localizado na região sul do Brasil, em uma planta com capacidade para a produção de 200 mil toneladas anuais.

Para a viabilização da produção do polietileno verde, a Braskem investiu US\$ 290) milhões de dólares na planta de eteno verde, que consome etanol de cana-de-açúcar (BRASKEM, 2018b).

É importante ressaltar que é necessário um estudo de cada caso, uma vez que esses dados variam em função do tipo de biomassa utilizada, da logística de produção e da infraestrutura local.

O preço do etanol, principal insumo para a produção de eteno a partir da rota alcoolquímica, é bastante volátil e pode afetar significativamente a viabilidade econômica desta rota. Foram obtidos dados semanais do CEPEA (2018) (Centro de Estudos Avançados em Economia Aplicada) desde outubro de 2002 até outubro de 2018. A figura 2-12 ilustra o movimento de preços nesse período.

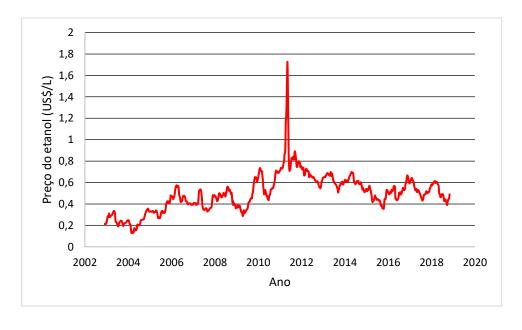


Figura 2-12: Histórico de preço do etanol pago ao produtor no Brasil Fonte: Elaboração própria a partir de dados do CEPEA (2018)

Como se pode observar a partir do gráfico acima, o preço do etanol variou quase 7 vezes, de US\$ 0,13 até US\$0,89/L nos últimos 16 anos, mesmo sem considerar o grande pico ocorrido em 2011, quando o preço do etanol atingiu US\$1,72/L. No último ano, isto é, de setembro de 2017 até setembro de 2018, o etanol variou de US\$0,39 até 0,61/L, ou seja, cerca de 56%.

O combustível consumido na planta é de cerca de 1,68 GJ/tonelada de etileno (CAMERON et al., 2012). Tipicamente, são utilizados como combustíveis o gás natural ou o bagaço, dependendo da disponibilidade da planta. No caso do bagaço, não há a emissão líquida de CO₂, uma vez que o carbono emitido foi absorvido durante o crescimento da planta. Além disso, soluciona-se o problema da disposição final do bagaço devido à produção de cana de açúcar. O preço do bagaço no Brasil varia de 25 a 150 reais por tonelada, tendo como valor médio cerca de R\$85,00 (UNIDOP, 2016). Considerando que 1 tonelada de cana de açúcar tem 276kg de bagaço e cerca de 598Mcal (NOVACANA, 2014), o gasto com combustível da planta, no caso de uso de bagaço varia entre US\$ 0,89 e US\$ 4,42, utilizando uma cotação do dólar de 3,70.

No caso do gás natural, ocorrerá a emissão de CO₂. Utilizando o fator de emissão de 56 kgCO₂/GJ (IPCC, 2006), a emissão final será de aproximadamente 0,06 tCO₂/tonelada de etileno. Quanto ao preço do combustível, o balanço energético de 2017 estipula o preço 68,6US\$/bep. (BEN, 2017). Fazendo-se as conversões necessárias, obtém-se o preço de US\$11,23/GJ. Consequentemente, o gasto com o combustível nesse processo será de 18,82US\$/ tonelada de etileno.

Para determinar o consumo de eletricidade do processo, analisou-se a planta desenvolvida por Cameron et al. (2012), que chegou a uma demanda de 1455,71 kW, para uma planta com capacidade de 1 milhão de toneladas de etileno por ano. Fazendo-se as devidas conversões e considerando um ano com 8760 horas, chegou-se a um consumo de eletricidade de 12,75vkWh/tonelada de etileno².

Finalmente, foram calculadas as emissões de CO₂ desta rota. Para cada molécula de glicose presente na cana de açúcar são formadas 2 moléculas de CO₂ e 2 moléculas de etanol, que originariam 2 moléculas de eteno, de acordo com a figura 2-13.

-

² Embora a produção de etanol não ocorra 12 meses por ano, considerou-se neste trabalho que haveria estoque de etanol o suficiente para se produzir eteno durante todo o ano.

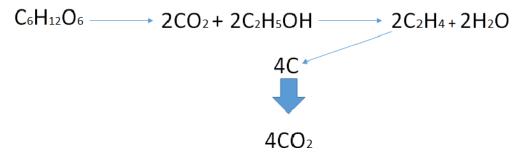


Figura 2-13: Esquema da transformação da molécula de glicose em etileno Fonte: Elaboração própria

Essas duas moléculas de eteno mostradas na figura gerariam uma emissão negativa de 4 moléculas de CO₂. Isso acontece, pois o carbono presente na molécula de eteno não será queimado, e ficará retido em algum produto derivado do eteno final útil à sociedade, não gerando, portanto, emissões de CO₂. Vale ressaltar que, caso ocorra a incineração deste plástico, as emissões de CO₂ voltariam a ocorrer. Dessa forma, como se pode concluir do esquema acima, 1 molécula de glicose gera 2 moléculas de eteno e 4 moléculas de CO₂ são capturadas. Portanto, temos:

2 moléculas de eteno \rightarrow 2*28 = 56 toneladas de eteno.

4 moléculas de CO_2 → 4*44 = 176 toneladas de CO_2 .

Assim, temos 176/56 = -3,14 toneladas de CO_2 por tonelada de eteno produzido. Além do CO_2 capturado com a fabricação de eteno, é possível ainda a captura das outras 2 moléculas de CO_2 mostradas no esquema acima. Entretanto, nem todo o CO_2 pode ser capturado. Tagomori et al. (2018) mostra em seu trabalho que a eficiência de captura desse CO_2 é de 90%. Dessa forma, teríamos:

2 moléculas de $CO_2 \rightarrow 2*44 = 88$ toneladas de CO_2 . Como a eficiência é de 90%, 0.9*88 = 79,2toneladas de CO_2 .

2 moléculas de eteno \rightarrow 2*28 = 56 toneladas de eteno.

Dessa forma, nesse segundo cenário teríamos uma emissão negativa de -79,2/56 = -1,41 toneladas de CO₂/tonelada de eteno oriundo da fermentação alcoólica.

Portanto, se, além da captura do carbono presente no eteno, for capturado o CO_2 oriundo da fermentação alcóolica, o total de CO_2 capturado será de -3,14 + (-1,41) = -4,55 toneladas de CO_2 /tonelada de eteno produzido.

Um outro estudo conduzido pela Braskem chega a um resultado semelhante, quando não considerada a captura do CO₂ advindo da fermentação alcóolica. A tabela 2-9 mostra as emissões de cada etapa.

Tabela 2-9: Emissões de cada etapa da produção de bioetileno

Etapa	Subetapa	Emissões (tCO2eq/t etileno)
Cultivo de cana de açúcar	Operações agrícolas	0,91
	Créditos de mudança em uso da	-1,1
	terra	
	Absorção de CO ₂	-3,14
	Total	-3,33
Produção de Etanol	Produção de Etanol	0,03
	Queima de bagaço	0,16
	Créditos de cogeração de	-1,17
	eletricidade	
	Total	-0,98
Produção de etileno e	Transporte de Etanol	0,46
polietileno	Operações industriais(eteno e	0,76
	polietileno)	
	Total	1,22
Total		-3,09

Fonte: Braskem (2016)

3. Metodologia

Nesta seção será definida a metodologia para uma comparação apropriada entre as rotas via nafta e via etanol. Na primeira parte serão definidos os parâmetros técnico-econômicos das rotas. Em seguida será apresentada a metodologia para a análise de custos das mesmas, seguida pela análise financeira. Finalmente, será analisada a questão do custo do frete, em um eventual cenário em que o eteno brasileiro possa ser introduzido no mercado chinês.

3.1 Parâmetros técnico-econômicos

Nesta seção serão definidos os parâmetros técnico-econômicos das duas rotas que serão os dados de entrada da análise econômica e financeira que será feita em seguida. São eles: preço dos insumos (nafta e etanol), consumo energético, consumo de combustível, preço do combustível, consumo de eletricidade, o rendimento do processo e as emissões de CO₂.

Os preços dos insumos encontrados, tanto no caso da nafta quanto no caso do etanol, variam bastante no período de análise. Diante disso, inicialmente decidiu-se utilizar o preço médio da nafta e do etanol durante o último ano (de outubro de 2017 a setembro de 2018). No caso da nafta foi utilizado o site *trading economics* (TRADING ECONOMICS, 2018). O valor obtido foi de 550 US\$/tonelada, tendo variado de 500 até 670US\$/tonelada nesse período. Para o preço do etanol, foi consultada a base de dados do CEPEA, da ESALQ (Centro de Estudos Avançados em Economia Aplicada da Escola Superior de Agricultura Luiz de Queiroz) (CEPEA, 2018). No último ano, os preços variaram entre 0,39US\$/litro e 0,61US\$/litro. O valor utilizado foi de 0,51US\$/litro, também se fazendo uma média dos preços do último ano. Fazendo-se as devidas conversões, o preço de etanol utilizado foi de 653US\$/tonelada.

A rota via nafta consome o próprio combustível, como mostra a tabela 2-7, uma vez que o rendimento em massa de hidrogênio e metano do craqueamento a vapor da mesma é de cerca de 26%. Por esse motivo, foi considerado o consumo de combustível

desta rota como sendo igual a zero. O consumo de combustível da planta via etanol foi definido em 1,7 GJ/tonelada de etileno.

O combustível da rota via etanol pode ser o bagaço ou o gás natural. No caso do bagaço, arbitrou-se o preço de R\$ 85,00, valor médio nos últimos anos. Considerando que uma tonelada de cana de açúcar tem 276kg de bagaço, e uma cotação do dólar de US\$3,7, chegou-se ao valor de 2,5 US\$/GJ. No caso do gás natural, conforme mostrado na seção anterior, o preço obtido foi de 11,23US\$/GJ.

Na rota via nafta, adotou-se a produção de eletricidade de 600kWh/ tonelada, de Spallina et al (2017). Para a rota via etanol, como explicado na seção anterior, o consumo de eletricidade da rota via etanol foi de 12,75kWh/tonelada de eteno.

Quanto ao rendimento do processo, os valores da rota via nafta variam conforme o autor, como foi visto na seção anterior. Adotou-se nesse estudo o valor de 0,3 do estudo realizado por Fattouh e Brown, da Universidade de Oxford, pelo fato de ser um valor intermediário e estar dentro da faixa de rendimento da ABB Lummus Global. No caso da rota via etanol, são necessárias 1,74 toneladas de etanol para produzir 1 tonelada de etileno (DECHEMA, 2017).

Para o consumo energético da rota via nafta, adotou-se o valor de 21GJ/tonelada de etileno, valor médio entre os encontrados na literatura (17 a 25GJ/t). Foi adotado também o fator de emissão padrão da nafta, segundo o IPCC, de 73,3 TJ/tonelada de CO₂. Diante disso, foi obtido o valor de 1,54 tCO₂/tonelada de etileno produzida.

No caso do etanol, serão considerados dois cenários: no primeiro, apenas o CO₂ capturado durante o crescimento da planta foi considerado. Nesse caso, o valor obtido foi de -3,14t CO₂ / tonelada de etileno. Em um segundo cenário, o CO₂ gerado durante a fermentação alcóolica também será considerado, obtendo assim o valor de -4,55 tCO₂ / tonelada de etileno. Além disso, como são dois os possíveis combustíveis possíveis para a planta (bagaço e gás natural), o valor total de emissão será diferente em cada caso. No caso do bagaço, o valor de emissão total permanece o mesmo, uma vez que todo o CO₂ emitido pelo mesmo já havia sido capturado durante o crescimento da planta, resultando, portanto, em uma emissão líquida nula³. Caso seja usado o gás natural, a emissão causada

-

³ Neste caso, não foi considerado todo o ciclo de vida do bagaço. Caso isso acontecesse, a emissão liquida total seria positiva, devido às emissões que ocorrem durante o cultivo da cana de açúcar e as do transporte do bagaço, por exemplo.

pelo mesmo deve ser contabilizada. Esse valor será igual ao produto de seu fator de emissão, 56,1tCO₂/TJ, pelo seu consumo de combustível, 1,68GJ/tonelada de etileno. O resultado encontrado foi de 0,09tCO₂/tonelada de etileno produzida. É importante ressaltar que, devido ao seu baixo custo, em torno de 10US\$/tonelada de CO₂, não serão considerados neste trabalho eventuais custos adicionais de captura do CO₂ oriundo da fermentação alcoólica (Tagomori et al., 2018). A tabela 3-1 resume as emissões da rota via etanol para cada caso.

Tabela 3-1: Emissões da rota via etanol para a produção de etileno

Tipo de captura Combustível	Captura somente durante o crescimento da planta	Captura durante o crescimento da planta mais 90% da fermentação alcoólica
Bagaço (tCO ₂ /t etileno)	-3,14	-4,55
Gás natural (tCO ₂ /t etileno)	-3,05	-4,46

Fonte: Elaboração própria

3.2 Análise de custos

Para realizar a análise econômica da produção de eteno tanto no caso via nafta quanto a partir do etanol, primeiramente foi feita uma busca na literatura do custo total de instalação da planta de cada uma das duas rotas, ou seja, o ISBL somado ao OSBL (*Inside Baterry limits* e *Outside Battery limits*)⁴.

No caso da nafta, Spallina et al. (2017) fizeram uma comparação entre as rotas de produção de olefinas a partir do craqueamento a vapor da nafta e a partir da oxidação do metano (OCM), do inglês, *oxidative coupling of methane*. O custo encontrado foi de 409,88 milhões de euros para o BEC, do inglês, *Bare Erected Cost*. A divisão dos custos da planta pode ser encontrada na figura 3-1.

⁴ Os custos da planta ISBL incluem os custos de aquisição e instalação dos equipamentos do processo. Incluem também os custos com qualquer outro material necessário para a operação da planta ou construção da mesma. Os custos da planta OSBL incluem utilidades como geradores de vapor ou eletricidade, esgoto, tratamento de resíduos, instalações para funcionários, etc.

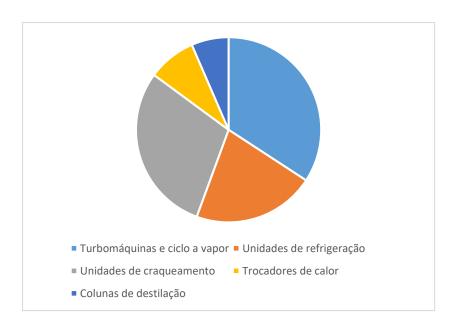


Figura 3-1: Distribuição dos custos da planta de eteno a partir da nafta

Fonte: Elaboração própria a partir de SPALLINA et al. (2017)

Considerando a cotação de 1 euro = 1,15 dólar, obtido na data de 15/10/2018, O BEC obtido foi de US\$ 471,36 milhões para uma capacidade original de 917.568 toneladas por ano. Como se pode ver pela figura acima, a maior parte deste custo referese às maquinas do ciclo a vapor, seguido pelas unidades de craqueamento e de refrigeração. Entretanto, para que a comparação com a rota via etanol fosse adequada, era necessário o custo ISBL& OSBL da planta de nafta. Dessa forma, a comparação entre as duas rotas seria apropriada. Diante disso, utilizou-se a metodologia desenvolvida pelo *National Energy Technology Laboratory — U.S. Department of Energy* (NETL/DOE) para calcular esse custo (BLACK, 2013). De posse do BEC, pode-se calcular o TIC (*Total Installation Cost*), o TDPC (*Total Direct Plant Cost*), o IC (*Indirect Costs*), e o EPC (*Enginnering Procurement and Construction*). Este último corresponde ao custo de ISBL & OSBL, que poderá ser comparado com a rota via etanol. As equações recomendadas por Black (2013) estão listadas a seguir:

Equação 3-1. Custos totais de instalação

$$TIC = 0.8 * BEC$$

Equação 3-2. Custos totais diretos da planta

$$TDPC = TIC + BEC$$

Equação 3-3. Custos totais indiretos

$$IC = 0.14 * TDPC$$

Equação 3-4. Custos totais de Engenharia, Aquisições e Construção (ISBL&OSBL)

$$EPC = TDPC + IC$$

Os resultados obtidos estão listados na tabela 3-2.

Tabela 3-2: Cálculo dos custos da planta de eteno via nafta

Custo	Valor (em milhões de dólares)
BEC	471,36
TIC	377,09
TDPC	848,45
IC	118,78
EPC (ISBL & OSBL)	967,23

Fonte: Elaboração própria

No caso da rota via etanol, Mohsenzadeh *et al.* (2017) descreveu em seu trabalho a planta de eteno verde da empresa *Chematur Engineering* e a patente de Barrocas et al. (1980). A partir desse trabalho, Marques et al. (2018) realizaram uma simulação do processo no *Aspen Plus*®, Versão 10, e ajustaram a capacidade da planta para 200 mil toneladas por ano, de forma a se assemelhar à planta da Braskem, que hoje é a maior produtora de eteno verde no Brasil. A planta foi dividida em ISBL e OSBL. O ISBL da planta pode ser dividido em 3 unidades: a unidade de reação, a de recuperação e a de purificação. O OSBL contempla a área de armazenamento, geração de utilidades e tratamento de efluentes. Para o cálculo do CAPEX, primeiramente foi determinado por Marques et al (2018) o custo de aquisição e instalação dos equipamentos, correspondendo ao custo do ISBL e do OSBL da planta. O custo ISBL&OSBL da planta encontrado foi de US\$133,7 milhões para uma capacidade de 200 mil toneladas por ano.

O fluxograma que compreende o ISBL pode ser encontrado na figura 3-2.

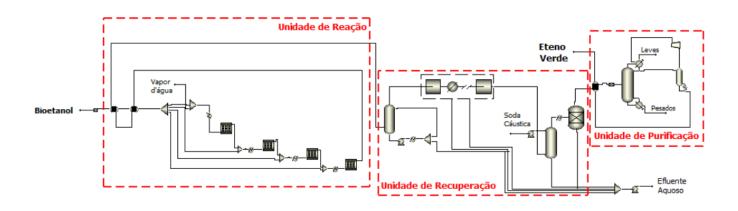


Figura 3-2: Fluxograma do processo de produção de eteno a partir do etanol

Fonte: Marques et al (2018)

O próximo passo foi definir os valores de contingência de processo e de projeto da planta. Após uma consulta ao relatório desenvolvido por BLACK (2013), do NETL/DOE, foi utilizada a tabela 3-3.

Tabela 3-3: Valores de contingência de processo para cada status da tecnologia

Status da tecnologia	Contingência de processo (%)
Nova tecnologia com dados limitados	40+
Tecnologia com dados em escala de bancada	30-70
Tecnologia com dados para pequenas plantas	20-35
piloto	
Plantas completas em operação	5-20
Tecnologia madura e usada comercialmente	0-10

Fonte: Adaptado de BLACK (2013)

No caso da rota via nafta, a tecnologia já é totalmente madura e possui diversas plantas operando em todo o mundo. Diante disso, e consultando a mesma tabela acima, adotou-se o valor de 5% para contingência de processo. Para a contingência de projeto, adotou-se o valor de 10%.

A produção de eteno a partir do etanol, por sua vez, ainda não está totalmente madura, embora já existam plantas operando comercialmente, como é o caso da planta da Braskem, no polo petroquímico de Triunfo. Por esse motivo, adotou-se o valor de 40% para a contingência de processo. Para a contingência de projeto, o relatório recomenda a utilização de uma porcentagem entre 15 e 30%. Adotou-se então uma contingência de projeto de 15%, ligeiramente superior à planta via nafta, por ser um processo menos maduro. Além disso, seguindo a metodologia do NETL, adotou-se um *Owner's Cost* de 5% do custo de ISBL & OSBL para ambas as plantas.

Em seguida, foi possível calcular o valor do total de capital fixo das duas rotas através da equação 3-5.

Equação 3-5. Cálculo do Capital Total do Projeto

$$CT = ISBL\&OSBL * (1 + CPC + CPJ + OC)$$

Onde:

CT = capital total de projeto, em milhões de US\$

ISBL&OSBL = investimentos em ISBL e OSBL, em milhões de US\$

CPC = Fator de contingência de processo

CPJ = Fator de contingência de projeto

OC = Fator de Owner's cost

O próximo passo foi utilizar o fator de localização para trazer esses custos para o Brasil. O fator utilizado para a planta de etanol foi de 1,2 (INTRATEC, 2018). Como não foi encontrado nenhum fator de localização específico para a Europa, lugar de origem do estudo de Spallina et al. (2017), utilizou-se o mesmo fator de localização dos EUA utilizado na planta de etanol. Em seguida, foi utilizado o fator de escala para que as plantas via etanol e via nafta tenham a mesma capacidade. A planta da nafta tinha originalmente a capacidade de 917.568 toneladas por ano. Por esse motivo, convencionou-se que ambas as plantas tivessem a capacidade de 1 milhão de toneladas de eteno por ano. Dessa forma, as plantas poderão ser comparadas apropriadamente. A correção do custo em função do fator de capacidade pode ser feita com a equação 3-6.

Equação 3-6. Ajuste dos custos à capacidade da planta

$$Custo_U(US\$) = Custo_R(US\$) * \left(\frac{\text{Capacidade U}}{\text{Capacidade R}}\right)^n$$

Onde:

Custo U = Custo do Processo na nova capacidade(US\$)

Custo R = Custo de Referência (US\$)

Capacidade U = Nova capacidade do Processo em (t/ano)

Capacidade R = Capacidade de Referência

n = 0.7 (fator de escala)

A próxima etapa foi calcular o OPEX da planta. Este foi dividido em duas partes: custos fixos e custos variáveis. Os custos fixos compreendem os custos de operação e

manutenção da planta, enquanto que os custos variáveis compreendem os custos do insumo (etanol), eletricidade e combustível e crédito de venda em coprodutos. Vale ressaltar que no caso da rota via etanol a formação de subprodutos é muito pequena. Logo, eles não serão contabilizados como crédito neste trabalho.

O custo de operação e manutenção foi calculado como uma porcentagem do custo de capital fixo obtido acima. Na falta de dados mais precisos optou-se por utilizar a mesma porcentagem de 15% utilizado por Marques (2018). No caso da rota via nafta, a porcentagem foi definida observando também o trabalho de SPALLINA (2018), que utilizou um fator de 7%. Optou-se por utilizar um fator mais baixo que na rota via etanol uma vez que a rota via nafta está mais consolidada, sendo razoável, portanto, assumir que esta tenha um custo de O&M menor. No entanto, pode-se argumentar que Marques tenha utilizado um fator de 15% pelo fato de a sua planta ter uma capacidade menor, de apenas 200 mil toneladas por ano. Neste caso, os custos de O&M seriam maiores, uma vez que parte do custo de O&M da planta é fixo. Por esse motivo, será feita posteriormente uma análise de sensibilidade considerando também o fator O&M da rota via etanol de 7%. A equação para o cálculo do custo de O&M da planta está descrita a seguir.

Equação 3-7. Cálculo do total de custos operacionais fixos

$$FOM = CF * f$$

Onde:

FOM = Total de Capital Operacional Fixo, em US\$/tonelada de eteno

CF = Total de Capital fixo, em US\$/tonelada de eteno

f = porcentagem do Capital fixo

Em seguida, foram calculados os custos variáveis. Primeiramente foi determinado o preço dos insumos: nafta e etanol. Conforme mencionado na seção anterior, foi constatada uma grande variação nos preços dos mesmos. Optou-se, inicialmente, por utilizar os preços médios do último ano (de outubro de 2017 a outubro de 2018). Os valores obtidos foram de 653 US\$/tonelada de etanol e de 550 US\$/tonelada de nafta. No entanto, foi necessário dividir esses valores pelos seus respectivos rendimentos definidos na seção anterior. Os valores encontrados foram de 1136 US\$/tonelada de eteno na rota via etanol e de 1833,3 US\$/tonelada de eteno na rota via nafta. Posteriormente, será feita uma análise de sensibilidade para uma melhor compreensão da influência da variação dos

preços de etanol nos custos de cada planta. A tabela 3-4 resume os preços e os rendimentos de cada processo.

Tabela 3-4: Preços e rendimentos das rotas de produção de etileno

	Via nafta	Via etanol
Preço do insumo	550	653
(US\$/tonelada)		
Rendimento	0,3	0,57
Preço por tonelada de	1833	1136
etileno (US\$/t)		

Fonte: Elaboração própria

A próxima etapa foi calcular os custos de eletricidade. Para isso, foi observado o preço da eletricidade industrial no Brasil e o consumo ou produção de eletricidade da planta. O preço da eletricidade industrial no Brasil em 2017, segundo o último balanço energético é de US\$155/MWh industrial (BEN,2017). No caso da nafta, houve uma produção de 600kWh/tonelada de eteno, conforme mostrado na seção anterior. Na planta via etanol, o consumo de eletricidade da planta de etanol foi de 12,75 kWh/tonelada de eteno. A equação que permite o cálculo do custo causado pelo consumo de eletricidade está descrita abaixo.

Equação 3-8. Consumo anual de eletricidade da planta.

$$E = \frac{T * P * G}{1000000}$$

Onde:

E = Consumo de eletricidade da planta, em milhões de US\$/ano

T = Capacidade da planta, em toneladas de eteno/ano

P = Preço da eletricidade industrial no Brasil, em US\$/MWh

G = Consumo de eletricidade da planta, em MWh/tonelada de eteno

Em seguida, foi calculado o gasto de combustível da planta. No caso da nafta, considerou-se que ela não consome combustível, uma vez que esta produz uma quantidade significativa de metano como mostra a tabela 2-7, e esse metano pode ser usado como o seu próprio combustível. No caso da rota via etanol, é importante ressaltar que existem dois tipos de combustíveis possíveis para a operação da planta: o bagaço de cana e o gás natural. Em um primeiro momento, para o mercado nacional, será utilizado o bagaço de cana. No entanto, para o mercado global, em uma planta de grande porte, dificilmente haveria disponibilidade para o uso de bagaço, sendo necessário o uso de gás natural. Isso acontece pois, por questões logísticas, a planta estaria localizada perto de um centro consumidor, estando, portanto, distante das fontes de bagaço. Além disso, o limite físico de transporte de biomassa é de cerca de 50km, devido ao autoconsumo causado pelo seu transporte e pela sua baixa densidade energética (Hoffmann, 2013 e Silva, 2017).

Para calcular o gasto com combustível na rota via etanol, foi estipulado o consumo de combustível, em GJ/ tonelada de eteno e o preço de cada combustível. Conforme definido na seção anterior, o gasto do combustível desta rota foi de 1,68GJ/tonelada de eteno, enquanto que os preços dos combustíveis são de 2,5US\$/GJ para o bagaço e de 11,2US\$/GJ para o gás natural. O consumo de combustível da planta pode ser calculado com a equação abaixo.

Equação 3-9. Consumo total de combustível da planta

$$Comb = \frac{T * P * G}{1000000}$$

Onde:

Comb = Consumo de combustível da planta, em milhões de US\$/ano

T = Capacidade da planta, em toneladas de eteno/ano

P = Preço do combustível, em US\$/GJ

G = Consumo de combustível da planta, em GJ/tonelada de eteno

Finalmente, foi realizada também uma busca dos preços dos coprodutos, de forma a ser possível o cálculo do valor da receita a ser obtida com a sua venda. Assim como no caso da nafta, foi observado a grande volatilidade nos preços dos subprodutos, havendo assim uma forte influência no valor da receita de venda dos coprodutos. No entanto, como

eles são produzidos predominantemente a partir da nafta, foi observado que existe uma certa correlação entre o preço dos coprodutos e o preço da nafta. Para o cálculo inicial do valor destas receitas, foi considerado o preço mais recente encontrado de cada coproduto. Isso foi feito devido a maior dificuldade de obtenção de dados, o que impossibilitou a utilização de um preço médio do último ano. Os preços dos coprodutos e a sua respectiva fonte estão indicados na tabela 3-5. É importante ressaltar que neste trabalho foi utilizada a alocação dos coprodutos da nafta como venda de créditos. Existem outras formas de alocação, como por exemplo via massa, energia, exergia, e produtividade marginal. Caso os coprodutos fossem alocados de outra forma, seria obtido um outro resultado.⁵

Tabela 3-5: Preços dos coprodutos do craqueamento a vapor da nafta

Coproduto	Preço (US\$/tonelada)	Fonte
Propileno	950	PLATTS (2018)
C4s	900	ICIS (2018)
Gasolina de pirólise	715	BEN (2017)
BTX	825	PLATTS (2018)
Óleo combustível	275	BEN (2017)

Fonte: Elaboração própria

Para calcular o valor total da receita com os coprodutos foi utilizada a equação a seguir.

Equação 3-10: Cálculo da receita obtida com a venda dos coprodutos

$$R = (Yp * Pp + Yb * Pb + Yg * Pg + Yt * Pt + Yo * Po) * C/(Ye * 1000000)$$

Onde:

R = Receita com a venda dos coprodutos (em milhões de US\$/ano)

Yp = Rendimento do propileno

Pp = Preço do propileno

Yb = Rendimento dos C4s

Pb = Preço dos C4s

⁵ Outras formas de alocação, considerando toda a análise do ciclo de vida, podem ser observadas nos trabalhos de Branco (2012) e Carvalho (2017)

Yg = Rendimento da gasolina de pirólise

Pg = Preço da gasolina de pirólise

Yt = Rendimento de BTX

Pt = preço dos BTX

Yo = Rendimento do óleo combustível

Po = Preço do óleo combustível

C = Capacidade da planta, em milhões de toneladas por ano

Yn = Rendimento do eteno

Vale ressaltar que, no caso da produção de eteno via etanol, a formação de coprodutos não é significativa e não será, portanto, considerada neste trabalho. Neste sentido, a geração de eletricidade através de bagaço é considerada na formação de produção do etanol — ou ainda pertence à planta de produção de etanol, mas não é um coproduto da planta de eteno. Posteriormente, será realizada uma análise de sensibilidade para uma melhor compreensão dos efeitos da variação desses preços no custo nivelado de produção de eteno.

A partir dos cálculos acima, foi possível obter o total de custos operacionais variáveis (VOM) a partir da equação a seguir.

Equação 3-11. Cálculo dos custos operacionais variáveis

$$VOM = I + E + Comb + R$$

Onde:

VOM = Total de Custos Operacionais Variáveis, em milhões de US\$/ano

I = Total de custos com insumos, em milhões de US\$/ano

E = Total de custos com Eletricidade, em milhões de US\$/ano

Comb = Total de custos com Combustível, em milhões de US\$/ano

R = Total de receitas em vendas de coprodutos, em milhões de US\$/ano

3.3 Análise financeira

O próximo passo foi calcular o custo nivelado das plantas. Para isso, foi preciso calcular o fator de recuperação de capital do processo. Em ambas as plantas, o horizonte econômico do projeto foi arbitrado em 30 anos e a taxa de desconto considerada foi de 15% a.a., segundo o relatório desenvolvido por Szklo et al. (2017) para o MCTIC

(Ministério da Ciência, Tecnologia, Inovações e Comunicações). O fator de recuperação de capital foi calculado de acordo com a equação a seguir.

Equação 3-12. Fator de Recuperação do Capital (FRC)

$$FRC = \frac{r}{1 - (1+r)^{-L}}$$

Onde:

r = Taxa de Desconto

L = Vida Útil da Planta (ano)

Em seguida, foi utilizada a equação 3-13 para o cálculo do custo nivelado da produção de eteno para cada uma das duas rotas. A partir desse resultado, será possível analisar a competitividade das rotas no mercado brasileiro e, após análise dos custos do frete, também no mercado internacional.

Equação 3-13. Cálculo do custo nivelado de eteno

$$CN = \frac{C * FRC + FOM + VOM}{T}$$

Onde:

CN = custo nivelado, em US\$/tonelada de eteno

C = Custo total de capital fixo anualizado, em US\$

FRC = Fator de recuperação de capital, em 1/ano

FOM = Total de custos operacionais fixos, em US\$/tonelada de eteno

VOM = Total de custos operacionais variáveis, em US\$/tonelada de eteno

T = Total de produção anual da planta, em toneladas de eteno/ano

3.4 Custo do frete

Além das análises econômica e financeira realizadas acima, será feita também a análise do custo do frete entre o Brasil e a China. Essa análise se faz necessária, pois, para que o eteno brasileiro seja considerado competitivo, será necessário considerar o custo do frete entre os dois países. Primeiramente, será analisado o custo do frete em si. Em seguida, serão contabilizadas as emissões do frete, que também devem ser consideradas

em um cenário com taxação das emissões de CO₂, no qual a rota via etanol tenderia a ser mais competitiva devido às suas emissões negativas.

Para calcular o custo do frete, primeiramente analisou-se o trabalho de Gomes (2013), que concluiu que o custo do transporte de gás natural liquefeito (GNL) dos EUA para o Brasil foi de 1,2US\$/MBtu. Assumiu-se que o custo do transporte de eteno é o mesmo que do GNL, uma vez que ambos são gases em temperatura ambiente, e são transportados após serem liquefeitos. Em seguida, a fim de determinar as distâncias entre o Brasil e os EUA e entre o Brasil e a China, foi consultado o site da KAPSARC (2018), um centro de estudo saudita de pesquisa de petróleo. Segundo este site, as distâncias marítimas entre o Brasil e os EUA giravam em torno de 10 000km, e entre o Brasil e a China de 20 000km. Dessa forma, o custo de transporte do Brasil para a China seria de 2,4US\$/MBtu. Considerando o poder calorífico inferior do GNL de 46GJ/tonelada, o custo do transporte do Brasil para a China seria de 105US\$/tonelada. É importante ressaltar que este trabalho considera que os custos do transporte do GNL e do eteno se comportam da mesma maneira, uma vez que ambos são gases em temperatura ambiente e que são liquefeitos para serem transportados. Uma outra limitação deste estudo é o fato de os custos com a compressão do GNL e do eteno não estarem discriminados, o que poderia afetar o resultado.

Em seguida, foram analisadas as emissões do transporte, para que estas sejam contabilizadas em um cenário de taxação das emissões de CO₂. Casseres (2018) classificou os navios em 4 tamanhos e quantificou as emissões considerando um transporte de GNL do Brasil para a China. A capacidade em volume dos navios não muda em relação ao navio de GNL. Entretanto, a capacidade em massa é alterada devido a diferença de densidade entre os dois produtos: a densidade do gás natural utilizada é de 455kg/m³, enquanto a do eteno liquefeito é de 570kg/m³. Os resultados do total de emissão para cada tipo de navio podem ser encontrados na tabela 3-6.

Tabela 3-6: Total de emissões de CO2 por tipo de navio

Tamanho do	Capacidade (m³)	Capacidade(t)	Total de
navio			emissões(tCO2)
Pequeno	50 000	28 500	4 176
Médio	100 000	57 000	5 450
Grande	150 000	85 500	6 492
Muito Grande	200 000	114 000	7 973

Fonte: Elaboração própria a partir de Casseres (2018)

Como se pode ver pela tabela acima, as emissões obviamente aumentam com o aumento do tamanho do navio. Entretanto, uma quantidade maior de eteno seria transportada. A tabela 3-7 mostra as emissões de cada tipo de navio por metro cúbico e por tonelada de eteno transportada.

Tabela 3-7: Emissões por metro cúbico e por tonelada de eteno transportada

Tamanho do navio	Emissão (tCO ₂ /m³)	Emissão (tCO2/tonelada de
		eteno)
Pequeno	83,5	0,15
Médio	54,5	0,10
Grande	43,3	0,08
Muito Grande	39,9	0,07

Fonte: Elaboração própria a partir de Casseres (2018)

Essas emissões encontradas devem ser somadas às obtidas neste capítulo juntamente com o custo do transporte em si com o objetivo de analisar a possibilidade de introduzir o eteno brasileiro obtido a partir do etanol no mercado chinês.

4. Resultados

Utilizando as equações e a metodologia descritas no capítulo anterior, foi possível estimar os custos das rotas via nafta e via etanol para a produção de eteno. Este capítulo será dividido em duas partes: primeiro serão comparadas as plantas visando atender ao mercado nacional e em seguida será analisada uma possível competitividade do eteno brasileiro via etanol no mercado chinês. No âmbito do mercado nacional, serão apresentados os resultados de ambas as rotas. Em seguida, será feita uma comparação desses resultados e uma análise de sensibilidade do mesmo, com o objetivo de compreender melhor os fatores que mais influenciam no processo, e até que ponto eles tornariam uma rota mais competitiva que a outra. O próximo passo foi acrescentar a essa análise também as emissões de CO₂, caso estas passem a ser valoradas. Finalmente, no âmbito do mercado global, serão apresentados os resultados incluindo os custos e as emissões do frete, de forma a analisar a possível inserção do eteno brasileiro no mercado chinês.

4.1 Mercado nacional

4.1.1 Rota via nafta

Para a rota via nafta, conforme visto no capítulo anterior, o investimento em ISBL & OSBL foi de US\$ 967,23 milhões para uma capacidade de 917568 toneladas por ano. Aplicando a equação 3-5 e utilizando um *owner`s cost* de 0,05, uma contingência de processo de 0,05 e uma contingência de projeto de 0,1, o capital total de projeto foi de US\$ 1170,35 milhões. Aplicando-se também um fator de localização de 1,2, o capital total de projeto no Brasil foi de US\$1404,42 milhões. Corrigindo-se a capacidade para 1 milhão de toneladas de etileno por ano, a fim de se equiparar a planta via etanol, o total de capital fixo passa a ser de US\$1491,60 milhões. Anualizando esse custo, considerando uma taxa de desconto de 15% e um horizonte de projeto de 30 anos, o CAPEX total nivelado será de 227,17US\$/tonelada de eteno. A tabela 4-1 resume os resultados para o CAPEX da rota via nafta.

Tabela 4-1: Resultados para o CAPEX da rota via nafta

Dado	Valor
ISBL&OSBL	(US\$) 967 milhões
Total de capital fixo (Europa)	(US\$) 1170 milhões
Total de capital fixo (Brasil)	(US\$) 1404 milhões
Investimento por tonelada por ano	(US\$) 1054/toneladas por ano
Total de capital fixo com capacidade ajustada	(US\$) 1492 milhões
CAPEX total nivelado	(US\$) 227/tonelada

Para o OPEX, dividiu-se mais uma vez os custos entre fixos e variáveis. Os custos fixos foram considerados como sendo de 7% do total de capital fixo, correspondendo ao custo de operação e manutenção da planta e totalizando US\$104 milhões por ano.

Os custos de operação variáveis foram divididos em custo de insumo e crédito de venda de eletricidade e coprodutos. Os resultados estão mostrados na tabela 4-2.

Tabela 4-2: Custos operacionais da produção de eteno a partir da nafta:

Custo	Valor (US\$)
Operação e manutenção (Milhões de US\$/ano)	104
Total de custos de operação fixos (Milhões de	104
US\$/ano)	
Total de custos de operação fixos	104
(US\$/tonelada)	
Insumo (nafta) (US\$ milhões/ano)	1833
Eletricidade (US\$ milhões/ano)	-93
Venda de coprodutos (US\$ milhões/ano)	-1258
Total de custos de operação variáveis (Milhões	482
de US\$/ano)	
Total de custos de operação	482
variáveis(US\$/tonelada)	
Total OPEX (Milhões de US\$/ano)	587
Total OPEX (US\$/tonelada)	587
Custo nivelado (CAPEX + OPEX)	814
(US\$/tonelada	

Fonte: Elaboração própria

A figura 4-1 mostra os principais componentes dos custos e dos créditos da rota de produção de eteno a partir da nafta.

-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

Custo nivelado de produção de eteno (US\$/tonelada)

FOM Feedstock Eletricidade Coprodutos Capex

Figura 4-1: Componentes do custo nivelado de produção de eteno a partir da nafta

Fonte: Elaboração própria

Como se pode observar a partir do gráfico acima, o custo do insumo (nafta) representa a maior parte do custo nivelado, seguido pelo CAPEX e pelo custo de operação e manutenção da planta. Na verdade, o custo da nafta necessária para se produzir uma tonelada de eteno supera até mesmo o custo nivelado do mesmo. Isso acontece devido aos créditos obtidos com a venda dos coprodutos e da eletricidade. Se do valor da venda dos coprodutos for descontado o custo da nafta, obtém-se o valor de 575US\$/tonelada de eteno, que representa cerca de 71% do custo nivelado total. É importante lembrar que caso os coprodutos da rota via nafta fossem alocados de uma forma diferente, outro resultado poderia ter sido obtido.

Quando esses resultados são comparados com os do relatório sobre o futuro dos petroquímicos divulgado pela IEA (2018), percebe-se uma diferença: enquanto este chega a valores de 2050US\$/tonelada de HVCs, este trabalho chegou a 814US\$/tonelada de etileno. No entanto, descontando do valor de 2050US\$/tonelada de HVCs o montante de

venda de coprodutos obtido nesse trabalho (1258US\$/tonelada), chega- se ao valor de 792US\$/tonelada de etileno, que está de próximo do resultado deste trabalho.

4.1.2 Rota via etanol

No caso da rota via etanol, conforme explicado na seção de metodologia, foi considerado um investimento ISBL&OSBL de US\$133,7 milhões de dólares. Utilizando um fator *owner`s cost* de 0,05, uma contingência de processo de 0,40 e a contingência de projeto de 0,15, e aplicando na equação 3-5, o capital total de projeto obtido em base EUA foi de US\$ 223 milhões. Considerando um fator de localização de 1,2, o capital total de projeto (Brasil) foi de US\$268 milhões. Considerando a capacidade original de 200 mil toneladas por ano, o investimento seria de US\$ 1338/toneladas por ano. Ajustandose à capacidade para 1 milhão de toneladas por ano, com o emprego da equação 3-6, o total de capital fixo com capacidade ajustada foi de US\$ 825 milhões. Anualizando esse custo, considerando uma taxa de desconto de 15% e um horizonte de projeto de 30 anos, temos um CAPEX total de US\$ 126/tonelada de eteno. A tabela 4-3 mostra os resultados para o CAPEX da rota via etanol.

Tabela 4-3: Resultados para o CAPEX da rota via etanol

Dado	Valor
ISBL&OSBL	(US\$) 134 milhões
Total de capital fixo (EUA)	(US\$) 223 milhões
Total de capital fixo (Brasil)	(US\$) 268 milhões
Investimento por tonelada por ano	(US\$) 668/toneladas por ano
Total de capital fixo com capacidade ajustada	(US\$) 825 milhões
CAPEX total nivelado	(US\$) 126/tonelada

Fonte: Elaboração própria

Para o OPEX, como explicado no capítulo 3, os custos foram divididos entre fixos e variáveis. Os custos fixos foram calculados como sendo 15% do total de capital fixo, e correspondem ao custo de operação e manutenção da planta (Marques et al, 2018). O total de custos variáveis fixos obtido foi de US\$123,81 milhões por ano. Posteriormente será feita uma análise de sensibilidade considerando também o fator de O&M de 7% para a planta via etanol.

Os custos de operação variáveis foram divididos entre custos de insumo (etanol), consumo de eletricidade e consumo de combustível, conforme descrito no capítulo anterior. Os resultados estão mostrados na tabela 4-4.

Tabela 4-4: Custos operacionais da rota via etanol

Custo	Valor (US\$)
Operação e manutenção (Milhões de US\$/ano)	124
Total de custos de operação fixos (Milhões de	124
US\$/ano)	
Total de custos de operação fixos	124
(US\$/tonelada)	
Insumo (etanol) (US\$ milhões/ano)	1136
Eletricidade (US\$ milhões/ano)	1,98
Combustível (US\$ milhões/ano)	4,2(bagaço) ou 18,82 (gás)
Venda de coprodutos (US\$ milhões/ano)	0
Total de custos de operação variáveis (Milhões	1142 (bagaço) ou 1157 (gás)
de US\$/ano)	
Total de custos de operação	1142 (bagaço) ou 1157 (gás)
variáveis(US\$/tonelada)	
Total OPEX (Milhões de US\$/ano)	1266 (bagaço) ou 1281 (gás)
Total OPEX (US\$/tonelada)	1266 (bagaço) ou 1281 (gás)
Custo nivelado (CAPEX + OPEX)	1392 (bagaço) ou 1406 (gás)
(US\$/tonelada	

Fonte: Elaboração própria

A figura 4-2 ilustra os principais componentes do custo nivelado de produção de eteno via etanol.

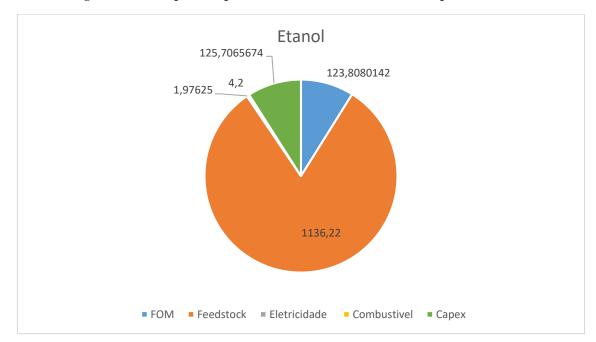


Figura 4-2: Principais componentes do custo nivelado de eteno a partir do etanol

Como se pode observar a partir do gráfico acima, o insumo representa a maior parte do custo de produção de etileno, cerca de 82%, seguido pelo CAPEX e pelo custo de operação e manutenção. Os custos com combustível e com eletricidade não são significativos. Marques (2018) chega ao custo nivelado de 1300 US\$/tonelada de eteno, o que está próximo do resultado obtido neste trabalho.

4.1.3 Comparação entre as rotas

A tabela 4-5 mostra uma comparação entre os custos das duas rotas.

Tabela 4-5: Comparação dos principais componentes do custo nivelado de produção de eteno das duas rotas

	Via etanol	Via nafta
Investimento por tonelada por	668US\$ /toneladas por ano	1054US\$/toneladas por ano)
ano		
CAPEX (US\$/tonelada)	126	227
Insumo (US\$/tonelada)	1833	1136
Eletricidade (US\$/tonelada)	-93	1,98
Venda de coprodutos	-1258	0
(US\$/tonelada)		
Total OPEX (US\$/tonelada)	1266 (bagaço) ou 1281 (gás)	587
Custo nivelado (US\$/tonelada)	1392 (bagaço) ou 1406 (gás)	814

A partir da análise da tabela acima, pode se concluir que a rota via nafta é mais competitiva em uma primeira análise, uma vez que esta apresenta um custo nivelado bastante inferior à rota via etanol. Foi observado também que os insumos representam a grande maioria do custo nivelado total: no caso da rota via etanol representam 82% enquanto que na rota via nafta 71%. Conforme mencionado anteriormente, o preço dos insumos apresenta uma grande variação no período. Somente nos últimos 10 anos, a nafta variou o seu preço entre 250 e 1100US\$ por tonelada. No caso do etanol, essa variação foi de US\$0,29 a 1,73 US\$/litro. Essa alta variação nos preços dos insumos e sua elevada porcentagem na composição do custo nivelado total representam um risco significativo para um investidor que analisa construir uma nova planta de eteno. No caso da nafta, esse risco é menor por dois motivos. O primeiro é que a porcentagem do preço dos insumos é menor: 71% contra 82% no caso da rota via etanol. O segundo e principal motivo são os coprodutos oriundos da rota via nafta. O consumo de etileno e de seus coprodutos são inelásticos aos seus preços, e estes são compostos pelo preço da nafta (FALLAS, 2017). Diante disso, concluiu-se que os preços dos seus coprodutos variam aproximadamente na mesma proporção que o preço da nafta. Isso faz com que o custo nivelado de eteno a partir da nafta seja mais estável, pois quando o preço da nafta aumenta, os preços dos coprodutos também se elevam aproximadamente na mesma proporção, reduzindo o impacto sobre o custo nivelado total. Por esse motivo, o risco de se construir uma nova planta de eteno a partir da nafta é menor, além de ser uma rota tecnicamente mais dominada e utilizada no mundo.

A figura 4-3 mostra a participação dos custos de capital e operacionais para cada rota.

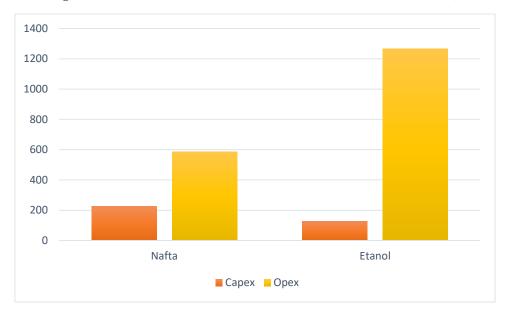


Figura 4-3: CAPEX e OPEX das rotas via Nafta e via Etanol (em US\$/t)

O gráfico acima mostra que a rota via etanol possui um CAPEX mais barato que a rota via nafta. No entanto, também confirma a tese acima de que os custos da rota via etanol são mais dependentes dos seus custos operacionais do que os custos da rota via nafta, conferindo uma incerteza maior a um possível investidor que deseje construir uma nova unidade de produção de eteno a partir do etanol. Quando descontado o crédito de venda de coprodutos do custo da nafta, o custo operacional desta rota chega a cerca da metade da rota via etanol. Caso os coprodutos não fossem considerados, a rota via etanol seria bem mais vantajosa. No entanto, esta não seria uma comparação apropriada uma vez que outros produtos com valor de mercado são também fabricados com o craqueamento a vapor da nafta e vendidos, gerando assim créditos a essa rota. O CAPEX e o insumo da rota via nafta são mais caros que na rota via etanol. A escolha desta rota somente se justifica devido à produção também de propeno, butenos, BTX e óleo combustível.

Ainda que a rota via etanol fosse escolhida, esses produtos teriam que ser fabricados a partir de rotas alternativas, como por exemplo a rota MTO (*Methanol To Olefins*). No entanto, esses custos não foram considerados nesse trabalho. Além do crédito em vendas de coprodutos, e do fato de eles já serem fabricados juntamente com o eteno, a venda de eletricidade diminui em quase 100US\$ o custo nivelado de produção de eteno, aumentando ainda mais a competitividade da rota via nafta. Portanto, fica claro

em uma primeira análise, considerando apenas o aspecto econômico, que a rota de fabricação a partir da nafta é extremamente mais barata e competitiva que a rota via etanol.

4.1.4 Análise de sensibilidade

Apesar de a rota via nafta ser mais competitiva a partir da análise acima, será feita também uma análise de sensibilidade, a fim de compreender melhor como alguns fatores críticos ao processo poderiam afetar o custo nivelado de ambas as rotas. Esta análise será dividida em quatro partes. Primeiramente serão analisados os custos dos insumos subtraídos dos créditos dos coprodutos. Em seguida serão analisados diferentes cenários para a taxa de desconto. O próximo passo será avaliado também o que ocorreria caso a rota via etanol tivesse o mesmo domínio técnico que a rota via nafta, o que reduziria os seus valores de contingência de processo e de projeto. Finalmente, será feita também uma simulação do que ocorreria caso o fator de O&M da rota via etanol tenha o mesmo valor de 7% da rota via nafta.

4.1.4.1 Custos dos insumos e coprodutos

Os custos com insumos, ainda que descontados os créditos com coprodutos representam a maioria do custo nivelado de produção de eteno. A fim de melhor compreender os efeitos da variação dos preços dos insumos e dos coprodutos foi feito uma análise do comportamento destes nos últimos anos.

No caso da rota via nafta, a variação no preço dos insumos é elevada: o menor valor encontrado nos últimos anos foi de 250US\$/tonelada e o maior valor de 1100US\$/tonelada. No entanto, o valor dos coprodutos também deve ser considerado. Assumiu-se nesse trabalho que a variação do preço da nafta ocorre na mesma proporção de seus coprodutos. Ou seja, se o preço da nafta aumenta em 10%, o valor obtido com a venda de seus coprodutos também aumentaria 10%, atenuando assim o impacto sobre o custo nivelado total. Vale ressaltar que esta é uma premissa conservadora, uma vez que como os coprodutos são produtos mais nobres que a nafta e estão atrelados ao crescimento econômico, a tendência é que a variação do preço dos coprodutos relativamente ao preço da nafta seja maior do que 1. A tabela 4-6 mostra o valor do custo nivelado para cada

caso, entre o menor e o maior preço de nafta encontrado, separados por um intervalo de 50US\$.

Tabela 4-6: Custo nivelado do eteno para diferentes preços da nafta e de coprodutos

	Nafta (US\$/t)	Insumos(US\$/tonelada de eteno)	Coprodutos (US\$/tonelada de eteno)	Insumos – Coprodutos (US\$/tonelada	Custo nivelado Nafta (US\$/tonelada
	250	922	570	de eteno)	de eteno)
	250	833	572	262	500
	300	1000	686	314	552
	350	1167	801	366	605
	400	1333	915	418	657
	450	1500	1029	471	709
	500	1667	1144	523	762
	550	1833	1258	575	814
	600	2000	1372	628	866
	650	2167	1487	680	919
	700	2333	1601	732	971
	750	2500	1715	785	1023
	800	2667	1830	837	1075
	850	2833	1944	889	1128
	900	3000	2059	941	1180
	950	3167	2173	994	1232
	1000	3333	2287	1046	1285
	1050	3500	2402	1098	1337
	1100	3667	2516	1151	1390
Média	675	2250	1544	706	945
Desvio	267	890	611	279	279
padrão		T			

Fonte: Elaboração própria

A partir da análise da tabela acima, pode se perceber que o preço da nafta possui uma alta variação, sendo bastante imprevisível o seu comportamento nos próximos 30 anos. No entanto, quando o valor de venda dos coprodutos é considerado, a variação cai significativamente, conferindo maior segurança a quem analisa a possibilidade de se investir em uma nova planta de eteno.

No caso da rota via etanol, o menor preço encontrado foi de 0,1291US\$/L, em fevereiro de 2004, e o maior valor foi de US\$1,7265, em abril de 2011. A fim de comparação com a rota via nafta, interpolaram-se 16 valores entre o menor e o maior valor acima para determinar o valor do custo nivelado nessas situações, assumindo todos os demais fatores de produção constantes. Os resultados podem ser encontrados na tabela 4-7.

Tabela 4-7: Custo nivelado do eteno em função do preço do etanol

	Preço do etanol (US\$/L)	Custo nivelado dos	Custo nivelado total
		insumos(US\$/tonelada de eteno)	(US\$/tonelada de eteno)
	0,1291	164	433,98
	0,2231	283	553
	0,3170	402	672
	0,4110	521	791
	0,5050	640	910
	0,5989	759	1030
	0,6929	878	1149
	0,7869	998	1268
	0,8808	1117	1387
	0,9748	1236	1506
	1,0687	1355	1625
	1,1627	1474	1744
	1,2567	1593	1864
	1,3506	1712	1983
	1,4446	1832	2102
	1,5386	1951	2221
	1,6325	2070	2340
	1,7265	2189	2459
Média	0,9278	1176	1447
Desvio	0,5016	635,98	636
padrão			

Como se pode observar na tabela acima, houve uma grande variação do custo nivelado em função do preço do etanol nos últimos anos. Como o horizonte econômico do projeto é de 30 anos, o comportamento do preço do etanol nesse período é ainda mais imprevisível. No seu valor mais baixo, por exemplo, o seu custo nivelado é de US\$434/tonelada, cerca da metade o custo nivelado considerado para a rota via nafta. No entanto, o seu maior valor é de 2459US\$/tonelada, quase o dobro do considerado no caso padrão, o que mostra a tamanha imprevisibilidade no comportamento do preço do etanol a longo prazo. O desvio padrão do custo nivelado total da rota via etanol também foi significativamente maior do que na rota via nafta, devido a inexistência de coprodutos da rota via etanol.

A figura 4-4 também ilustra esse comportamento ao se variar o preço dos insumos e dos coprodutos em até 20% para mais e para menos em cada uma das duas rotas.

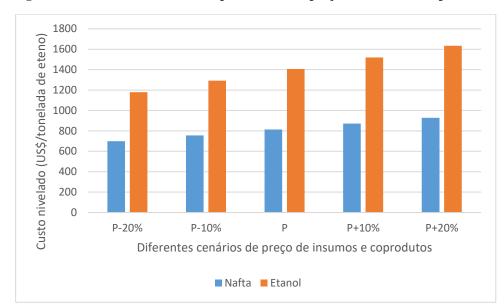


Figura 4-4: Custo nivelado de eteno para diferentes preços de insumos e coprodutos

A análise do gráfico acima permite concluir que mesmo considerando o preço do etanol 20% mais barato e o da nafta 20% mais caro, a rota via nafta continua a ser mais competitiva (sem levar em conta as emissões de CO₂). Além disso, o gráfico confirma a visão acima de que a existência dos coprodutos da rota via nafta atenua o impacto que uma eventual alta no preço da nafta possa ter sobre o custo nivelado de eteno.

4.1.4.2 Taxa de desconto

A fim de avaliar a influência da taxa de desconto no custo nivelado de ambas as rotas, foram considerados três taxas de descontos diferentes a fim de se analisar o impacto da mesma sobre o custo nivelado de eteno: 15% (a taxa utilizada no cenário padrão), 10% e 20% (ao ano). A taxa de desconto foi escolhida uma vez que uma mudança na mesma poderia causar mudanças no CAPEX, e, consequentemente, no custo nivelado de eteno. Os resultados considerando tanto o uso de gás natural quanto o do bagaço como combustível na planta via etanol podem ser observados na figura 4-5.

1600 Custo nivelado (US\$/tonelada de eteno) 1400 1200 1000 800 600 400 200 0 10% 15% 20% Custos nivelados de eteno para diferentes taxas de desconto Nafta Etanol gás natural ■ Etanol bagaço

Figura 4-5: Custos nivelados de eteno para diferentes taxas de desconto

Como se pode perceber, a rota via nafta é mais afetada pelo aumento da taxa de desconto. Esse resultado era esperado uma vez que a taxa de desconto não afeta o valor dos custos operacionais das plantas, e a planta via nafta possui um CAPEX maior que a planta via etanol, quando considerada uma mesma capacidade de produção. No entanto, quando calculado o custo total, o aumento da taxa de desconto não consegue fazer com que as plantas tenham custos equivalentes, permanecendo sempre a planta via nafta com custos inferiores aos da planta via etanol. O uso de bagaço ou de gás natural também não acarreta mudanças significativas no custo nivelado total, principalmente quando as emissões de CO₂ não são consideradas. O uso de bagaço é cerca de 15US\$/tonelada mais barato que o uso de gás natural. No entanto, em uma planta de grande porte como a considerada acima, dificilmente haveria disponibilidade para o uso de bagaço, sendo necessário o uso de gás natural. Isso acontece pois por questões logísticas, a planta estaria localizada perto de um centro consumidor, estando, portanto, distante das fontes de bagaço. Além disso, o limite físico de transporte de biomassa é de cerca de 50km, devido ao autoconsumo causado pelo seu transporte e pela sua baixa densidade energética (Hoffmann, 2013 e Silva, 2017).

4.1.4.3 Aumento do domínio técnico da rota via etanol (redução do fator de contingência)

Como foi visto nas análises acima, a rota via nafta apresenta um custo bastante inferior à rota via nafta. Uma justificativa que poderia ser considerada para este fato é a que a rota via nafta é a mais utilizada por possuir um domínio técnico bastante superior à rota via etanol, uma vez que ela já é utilizada tradicionalmente no mundo. Para testar essa hipótese, foram testados os mesmos valores de contingência de processo e de projeto que o da rota via nafta. Os resultados utilizando o gás natural podem ser encontrados na tabela 4-8.

Tabela 4-8: Comparação dos custos nivelados considerando os mesmos fatores de contingência e o gás natural como combustível

	Nafta	Etanol (gás natural)	Etanol (gás natural) com contingência igual à da rota via nafta
CAPEX	227	126	91
OPEX	587	1281	1247
Total	814	1407	1338

Fonte: Elaboração própria

A tabela acima mostra que, mesmo que a rota etanol fosse amplamente utilizada no mundo, assim como a rota via nafta, haveria uma queda de cerca de 70US\$/tonelada de eteno no seu custo nivelado. Entretanto, isso não seria suficiente para torná-la mais competitiva. Portanto, considerando apenas a parte econômica e financeira, a rota via nafta deveria ser a escolhida, uma vez que apresenta um custo nivelado inferior ao da rota via etanol.

É possível fazer uma análise semelhante e chegar a mesma conclusão acima, porém utilizando o bagaço como combustível. Pode-se perceber também que os custos nivelados não possuem alteração significativa com a mudança de combustível. Entretanto, essa não é uma comparação apropriada, uma vez que estão sendo comparadas duas plantas de grande porte, com capacidade de 1 milhão de toneladas de eteno por ano, e, como explicado acima, não haveria disponibilidade para o uso do bagaço nessas condições. Os resultados podem ser encontrados na tabela 4-9.

Tabela 4-9: Comparação dos custos nivelados considerando os mesmos fatores de contingência e o gás natural como combustível

	Nafta	Etanol (bagaço)	Etanol (bagaço) com contingência igual a rota via nafta
CAPEX	227	126	91
(US\$/tonelada)			
OPEX	587	1266	1232
(US\$/tonelada)			
Total	814	1392	1323
(US\$/tonelada)			

Fonte: Elaboração própria

4.1.4.4 Queda do custo de O&M da rota via etanol

No caso padrão, optou-se por utilizar na rota via etanol o fator de 15% do artigo do custo de capital fixo para calcular o custo de O&M (MARQUES, 2018). No entanto, a capacidade da planta considerada por ele era de apenas 200 mil toneladas por ano. Como parte do custo de O&M da planta é fixo, é de se esperar que ele tenha utilizado um fator de O&M mais elevado. Por este motivo, nesta seção será feita uma análise de sensibilidade considerando um fator de O&M de 7%, o mesmo da rota via nafta, para a rota via etanol. Os resultados considerando o gás natural como combustível podem ser encontrados na tabela 4-10.

Tabela 4-10: Análise de sensibilidade considerando o fator de 7% para o custo de O&M da rota via etanol

	Nafta	Etanol (O&M 15%)	Etanol (O&M 7%)
CAPEX	227	126	126
(US\$/tonelada)			
OPEX (US\$/tonelada)	587	1281	1215
Total (US\$/tonelada)	814	1407	1341

Fonte: Elaboração própria

A partir da análise da tabela acima, percebe-se que ao se utilizar um fator de O&M de 7% para a rota via etanol, esta apresenta uma queda de cerca de 66 US\$/tonelada no seu custo nivelado. No entanto, isso não é suficiente para que esta rota compita com a rota via nafta em um cenário em que as emissões de CO₂ não são valoradas. Vale ressaltar que mesmo a utilização de um fator de O&M de 7% para a rota via etanol juntamente com os mesmos fatores de contingência da rota via nafta (as duas últimas análises de

sensibilidade) não seria suficiente para tornar os custos nivelados de ambas as rotas equivalentes.

4.1.5 Comparação entre as rotas considerando a valoração das emissões de CO2

A análise dos resultados até aqui mostrou que a rota via nafta é mais vantajosa que a rota via etanol quando são considerados apenas os custos privados (isto é, sem contabilizar as externalidades ambientais). No entanto, uma análise mais profunda é necessária com o objetivo de considerar também o aspecto ambiental, uma vez que a rota via nafta emite 1,54 toneladas de CO₂ por tonelada de eteno fabricada através do processo de craqueamento a vapor. Além disso, a rota via etanol possui uma grande capacidade de capturar CO₂. Somente durante o crescimento da planta, ocorre a captura de 3,14 toneladas de CO₂ por tonelada de eteno fabricado. Quando se considera também a captura do CO₂ gerado durante a fermentação alcóolica, esse número sobe para 4,55. Tendo em vista que, em diversos países, já existe um mercado de CO₂, é possível que a rota via etanol passe a ser mais vantajosa que a rota via nafta a partir de um determinado valor por emissão de CO₂ (Santos, 2018). Esse valor de emissão (preço de convergência) pode ser calculado a partir da equação 4.1.

Equação 4.1 Cálculo do preço de convergência

$$C_N + E_N * Pconv = C_A + E_A * Pconv$$

Onde:

C_N: custo de produção de etileno via nafta = 813US\$/tonelada de etileno

 E_N : Emissão do processo via nafta = 0,46 tCO₂eq/t etileno produzido, considerando 30% da emissão total, ou 1,54tCO₂eq/t etileno, considerando 100% das emissões.

Pconv: Preço de emissão de CO₂ no qual o custo de produção de etileno a partir das duas rotas é equivalente.

C_A: custo de produção de etileno via etanol = US\$1391,9(usando bagaço) ou US\$ 1406,5 (usando gás) por tonelada de bioetileno produzido

E_A: Emissão do processo via etanol, em tCO₂/tonelada de etileno. Nesse caso, temos 4 possibilidades: -3,05(com gás e sem captura da fermentação alcoólica), -3,14 (com

bagaço e sem captura da fermentação alcoólica, -4,46 (com gás e captura da fermentação alcoólica) e -4,55(com bagaço e com captura da fermentação alcoólica).

Diante dessas 4 possibilidades de valor de emissão da rota via etanol, 2 valores para a emissão da rota via nafta, e 2 valores de custos possíveis para a rota via etanol. Os resultados dos preços de convergência, em US\$/tCO₂ estão resumidos na tabela 4-11.

Tabela 4-11: Resultado dos preços de convergência para diversos cenários de custos e emissão (US\$/tCO₂)

Outros	$C_E = 1391,9$	$C_E = 1391,9$	$C_E = 1406,5$	$C_E = 1406,5$
parâmetros	US\$/t etileno;	US\$/t etileno;	US\$/t etileno;	US\$/t etileno;
	$\mathbf{E_N} = 0.46$	$E_N = 1,54$	$\mathbf{E_N} = 0.46$	$\mathbf{E}_{N} = 1,54$
	tCO ₂ /t etileno			
Emissão EtOH				
-3,05 tCO ₂ /t etileno	165	126	169	129
produzido (Uso de gás				
natural e sem captura				
de CO2 da				
fermentação)	1			
-3,14 tCO ₂ /t etileno	161	124	165	127
produzido(Uso de				
bagaço e sem captura				
de CO ₂ da				
fermentação)				
-4,46 tCO ₂ /t etileno	118	96	120	99
produzido(Uso de gás				
natural e com captura				
de CO2 da				
fermentação)				
-4,55 tCO ₂ /t etileno	115	95	118	97
produzido (Uso de				
bagaço e com captura				
de CO ₂ da				
fermentação)				

Fonte: Elaboração própria

A partir da análise da tabela acima, pode se perceber que a rota via etanol ainda não é competitiva na maioria dos países. No entanto, em um cenário em que essas taxações cresçam, a fim de que os países possam cumprir o Acordo de Paris, a rota via etanol tem possibilidades reais de se tornar competitiva. Na Suécia, por exemplo, essa taxa já é de 140US\$/tCO₂, e na Suíça de 101US\$/tCO₂ (WORLD BANK GROUP, 2018). Dessa forma, elas já seriam maiores que o preço de convergência em alguns dos cenários acima, tornando a rota via etanol mais competitiva nesses países.

Além da perspectiva de se instaurar um mercado de carbono no Brasil nos próximos anos, a grande variabilidade nos preços dos insumos deve ser considerada. Nesse sentido, foram calculados os preços de convergência para os menores e maiores valores dos preços dos insumos de cada uma das duas rotas. Foram calculados também os preços de convergência para os mesmos valores intermediários da seção 4.1.4.1 acima. Os resultados considerando o uso de gás natural como combustível da rota via etanol e não considerando a captura do CO₂ oriundo da fermentação alcóolica (apenas o oriundo do crescimento da planta) estão apresentados na tabela 4-12. Nela, a primeira coluna representa os diferentes custos possíveis para a nafta (N), enquanto que a primeira linha representa o preço de convergência para cada combinação possível, ou seja, o preço de emissão necessário para que o eteno da rota via etanol tenha o mesmo custo nivelado que o da rota via nafta.

Tabela 4-12: Cálculo do preço de convergência sem considerar a captura do CO2 da fermentação alcoólica

N/E	434	553	672	791	911	1030	1149	1268	1387	1506	1625	1744	1864	1983	2102	2221	2340	2459
500	-14	12	38	63	89	115	141	167	193	219	245	271	297	323	349	375	401	427
552	-26	0	26	52	78	104	130	156	182	208	234	260	286	312	338	364	389	415
605	-37	-11	15	41	67	93	119	144	170	196	222	248	274	300	326	352	378	404
657	-49	-23	3	29	55	81	107	133	159	185	211	237	263	289	315	341	367	393
709	-60	-34	-8	18	44	70	96	122	148	174	200	226	251	277	303	329	355	381
762	-71	-45	-19	6	32	58	84	110	136	162	188	214	240	266	292	318	344	370
814	-83	-57	-31	-5	21	47	73	99	125	151	177	203	229	255	281	307	332	358
866	-94	-68	-42	-16	10	36	62	88	113	139	165	191	217	243	269	295	321	347
919	-106	-80	-54	-28	-2	24	50	76	102	128	154	180	206	232	258	284	310	336
971	-117	-91	-65	-39	-13	13	39	65	91	117	143	169	194	220	246	272	298	324
1023	-128	-102	-76	-50	-25	1	27	53	79	105	131	157	183	209	235	261	287	313
1075	-140	-114	-88	-62	-36	-10	16	42	68	94	120	146	172	198	224	250	276	301
1128	-151	-125	-99	-73	-47	-21	5	31	56	82	108	134	160	186	212	238	264	290
1180	-163	-137	-111	-85	-59	-33	-7	19	45	71	97	123	149	175	201	227	253	279
1232	-174	-148	-122	-96	-70	-44	-18	8	34	60	86	112	138	163	189	215	241	267
1285	-185	-159	-133	-107	-82	-56	-30	-4	22	48	74	100	126	152	178	204	230	256
1337	-197	-171	-145	-119	-93	-67	-41	-15	11	37	63	89	115	141	167	193	219	244
1389	-208	-182	-156	-130	-104	-78	-52	-26	0	25	51	77	103	129	155	181	207	233

Fonte: Elaboração própria

A tabela 4-13 indica os valores dos preços de convergência, dessa vez considerando também o CO₂ capturado na fermentação alcóolica

.Tabela 4-13: Cálculo do preço de convergência considerando também a captura do CO₂ da fermentação alcoólica

N/E	434	553	672	791	911	1030	1149	1268	1387	1506	1625	1744	1864	1983	2102	2221	2340	2459
500	-11	9	29	49	68	88	108	128	148	168	188	207	227	247	267	287	307	327
552	-20	0	20	40	60	80	99	119	139	159	179	199	219	238	258	278	298	318
605	-28	-9	11	31	51	71	91	111	130	150	170	190	210	230	250	269	289	309
657	-37	-17	3	22	42	62	82	102	122	142	161	181	201	221	241	261	281	300
709	-46	-26	-6	14	34	53	73	93	113	133	153	173	192	212	232	252	272	292
762	-55	-35	-15	5	25	45	65	84	104	124	144	164	184	204	223	243	263	283
814	-63	-43	-24	-4	16	36	56	76	96	115	135	155	175	195	215	235	254	274
866	-72	-52	-32	-12	7	27	47	67	87	107	127	146	166	186	206	226	246	265
919	-81	-61	-41	-21	-1	19	38	58	78	98	118	138	158	177	197	217	237	257
971	-89	-70	-50	-30	-10	10	30	50	69	89	109	129	149	169	188	208	228	248
1023	-98	-78	-58	-39	-19	1	21	41	61	81	100	120	140	160	180	200	219	239
1075	-107	-87	-67	-47	-27	-8	12	32	52	72	92	111	131	151	171	191	211	231
1128	-116	-96	-76	-56	-36	-16	4	23	43	63	83	103	123	142	162	182	202	222
1180	-124	-104	-85	-65	-45	-25	-5	15	34	54	74	94	114	134	154	173	193	213
1232	-133	-113	-93	-73	-54	-34	-14	6	26	46	65	85	105	125	145	165	185	204
1285	-142	-122	-102	-82	-62	-43	-23	-3	17	37	57	77	96	116	136	156	176	196
1337	-150	-131	-111	-91	-71	-51	-31	-12	8	28	48	68	88	108	127	147	167	187
1389	-159	-139	-120	-100	-80	-60	-40	-20	0	19	39	59	79	99	119	139	158	178

Fonte: Elaboração própria

Os números negativos nas tabelas acima representam os pares ordenados de preços de insumos nos quais a rota via etanol já é mais competitiva, uma vez que o numerador da equação 4-1 fica negativo (CA - CN), e o denominador é constante e positivo. Dessa forma, quanto mais negativo for o preço de convergência, maior é a diferença de custos entre as duas rotas, e mais vantajosa é a rota via etanol. Os números positivos indicam o valor que a taxa de emissão de CO₂ deve ter para que ambas as rotas tenham custos equivalentes. Como era de se esperar, o valor do preço de convergência aumenta conforme o preço do etanol aumenta e quando o preço da nafta cai. Além disso, os preços de convergência caem significativamente quando a captura do CO₂ gerado durante a fermentação alcoólica é considerada. É importante observar também que em diversos cenários acima a rota via etanol é mais barata (preços de convergência negativos), embora a maioria ainda traga a rota via nafta com custos nivelados menores (preços de convergência positivos). Quanto aos valores dos preços de convergência, boa parte deles está abaixo de 140US\$/tonelada de CO₂, valor que é praticado atualmente na Suécia. Outros países também já possuem elevadas taxações de CO₂, como a Suíça e a Finlândia, que possuem taxas de 101 e 77US\$/tonelada de CO₂. A França também possui uma taxa de 55US\$/tCO2. No entanto, a grande maioria dos países ainda possuem taxas abaixo dos 30US\$/tCO₂ (WORLD BANK GROUP, 2018). No Brasil, ainda não se pode falar que a rota via etanol é competitiva, devido ao fato de as emissões não serem valoradas no país. No entanto, a estimativa das taxas de emissão para que o mundo respeite o Acordo de Paris e o aquecimento máximo do planeta de 2 graus Celsius desde a época pré-industrial é de 1000US\$/tonelada de CO₂ (WORLD BANK GROUP, 2018). O maior valor de preço de convergência encontrado na tabela acima é de 427US\$/tonelada de CO₂, mesmo sem considerar a captura do CO₂ gerado durante a fermentação alcoólica. Caso essa captura seja considerada, esse valor cai para 327US\$/tonelada de CO₂. Nesse sentido, caso o mundo pretenda cumprir o Acordo de Paris, a produção de eteno a partir do etanol tem um futuro promissor, principalmente no Brasil, que já é um grande produtor de etanol.

Além disso, em um possível cenário de eletrificação dos transportes, haveria a liberação de uma parcela significativa de etanol, que hoje é usada como combustível. Esse etanol poderia ser utilizado para produzir eteno, e o seu preço cairia devido à presença de um excesso de etanol no mercado. Porém, analisando pela ótica ambiental, deixar de

consumir etanol como combustível para produzir eteno a partir do etanol só faria sentido caso os transportes sejam eletrificados. Caso contrário, essa demanda seria suprida com o uso da gasolina, o que causaria um aumento nas emissões de CO₂. Outrossim, não haveria produção dos coprodutos da rota via nafta, e estes precisariam ser produzidos por rotas alternativas, que são por vezes mais caras e não estão tão consolidadas quanto o craqueamento a vapor da nafta. Entre essas rotas poderia se optar por produzir as olefinas através da rota MTO, produzir o propeno através da desidrogenação do propano (GLP) e modificar o FCC (Unidade de Craqueamento Fluido Catalítico) de forma a produzir mais propeno, uma vez que o eteno já estaria sendo produzido a partir do etanol.

4.2 Análise da possível inserção do eteno brasileiro via etanol no mercado chinês

A partir da análise feita na seção anterior, percebeu-se que a produção de eteno a partir do etanol pode passar a ser economicamente viável em cenários com altos valores de emissão de CO₂. Diante disso, seria necessário um mercado em que o eteno brasileiro via etanol pudesse ser competitivo. A curva global de custos e capacidades para o etileno está mostrada na figura 4-6.

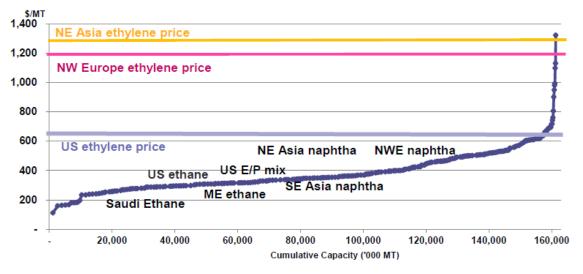


Figura 4-6: Curva global de custos de produção e capacidade para o etileno Fonte: Fallas (2017)

A partir da análise da figura acima, pode-se perceber que o eteno americano a partir do gás natural é o que possui menor custo de produção, cerca de 600US\$/tonelada

de etileno. No entanto, esta produção não consegue atender toda a demanda mundial. Além disso, percebe-se que o eteno produzido no nordeste asiático possui o maior custo de produção, cerca de 1300US\$/tonelada, sinalizando uma possibilidade de entrada do eteno brasileiro via etanol na região. Além disso, vale ressaltar que, como mencionado anteriormente, a China tem um dos maiores crescimentos econômicos da atualidade e uma crescente relação comercial com o Brasil.

A figura 4-7 mostra o preço do eteno brasileiro em função do valor da emissão do CO₂.

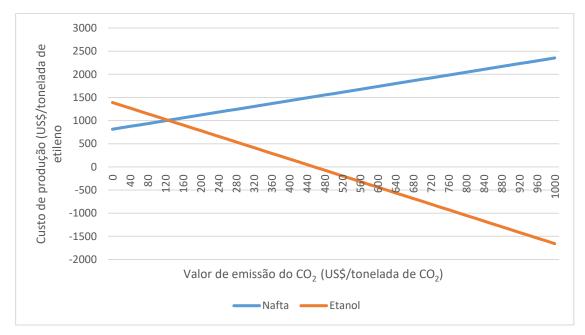


Figura 4-7: Custo de produção do etileno em função do valor de emissão de CO₂ sem considerar a captura de CO₂ gerado durante a fermentação alcóolica

Fonte: Elaboração própria

Analisando o gráfico acima, percebe-se que o preço do eteno verde cai significativamente com o aumento do valor da emissão de carbono, chegando a assumir valores negativos quando o preço de carbono ultrapassa os 480US\$/tonelada de CO₂. Considerando os valores atuais do CO₂ em mercados de carbono consolidados, o eteno brasileiro a partir do etanol teriam um prêmio de 308US\$/tonelada de etileno na Suíça e 427US\$/tonelada de etileno na Suécia, reduzindo significativamente seus custos de produção. A rota de produção do eteno brasileiro via nafta também foi mostrado acima. No entanto, esta rota possui emissão positiva e o seu custo nivelado cresce conforme o valor das emissões de CO₂ aumenta. É importante ressaltar que o gráfico acima não leva em conta a captura do CO₂ oriundo da fermentação alcoólica. Caso esta fosse considerada,

a inclinação da reta seria maior, resultando em preços de eteno via etanol ainda mais competitivos, como se pode observar na figura 4-8.

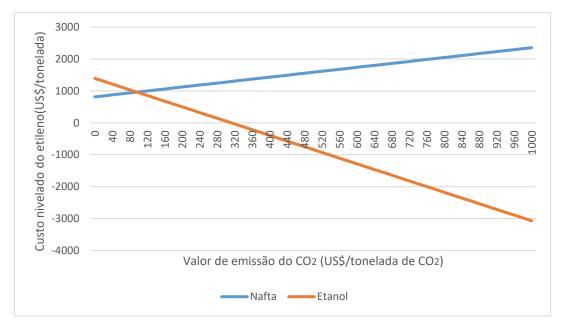


Figura 4-8: Custo de produção do etileno em função do valor de emissão de CO2 considerando também a captura de CO2 gerado durante a fermentação alcóolica

Fonte: Elaboração própria

No entanto, os custos acima não consideram o frete do Brasil para a China nem as emissões causadas pelo mesmo. O custo do frete foi estimado neste estudo em 105US\$/tonelada de etileno, conforme calculado no capítulo 3. Quanto às emissões, optou-se por utilizar o maior valor possível, ou seja, utilizando o menor navio, gerando uma emissão de 0,15tCO₂/tonelada de etileno. Os resultados obtidos são mostrados na figura 4-9.

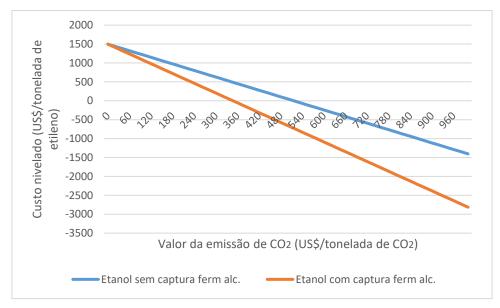


Figura 4-9: Custo nivelado da produção de eteno considerando o frete para a China Fonte: Elaboração própria

Analisando o gráfico acima, pode-se perceber que o eteno via etanol se torna rapidamente competitivo com o aumento das taxas por emissão de CO₂. Considerando o preço do mercado chinês como sendo de 1300US\$/tonelada, o eteno brasileiro se torna competitivo com um valor de emissão acima de 68US\$/tonelada, sem considerar a captura de CO₂ oriundo da fermentação alcoólica. Se considerarmos essa captura, esse valor cai para 46US\$/tonelada. Além disso, pode-se perceber que, em cenários com alta taxação de CO₂, o custo nivelado do eteno pode ser negativo. Isso acontece com valores a partir de 516 e 347US\$/tonelada de CO₂, não considerando e considerando a captura do CO₂ gerado durante a fermentação alcoólica respectivamente. Considerando a estimativa de 1000US\$/tonelada de CO₂ para que o mundo possa conter o aquecimento global abaixo dos 2ºC, esses valores mostram uma oportunidade de entrada do eteno brasileiro via etanol no mercado chinês(WORLD BANK GROUP, 2018). É importante ressaltar que não foram consideradas nesse trabalho eventuais impostos ou barreiras que o governo chinês poderia impor ao eteno brasileiro. No entanto, como os custos e as emissões do frete para a China teoricamente não impediriam o eteno verde brasileiro de chegar até a China, este poderia também atingir outros mercados a partir de um determinado valor de emissão, uma vez que os custos e as emissões do frete seriam ainda menores.

5. Conclusão

Este trabalho comparou as duas principais rotas de produção de eteno: via nafta e via etanol. A rota via nafta é tradicionalmente mais utilizada, uma vez que é tecnicamente mais dominada, por ser mais barata e por produzir também outros produtos petroquímicos básicos. No entanto, esta rota é uma grande emissora de CO₂, e as preocupações com o meio ambiente e com as mudanças climáticas são cada vez maiores. O Acordo de Paris, assinado em 2015 por 195 países, fez com estes se comprometessem em tomar medidas para reduzir as emissões de CO₂ e assim conter o aquecimento global em no máximo 2°C desde a época pré-industrial, além de fazer esforços para que o aquecimento seja apenas de 1,5°C. Essa redução das emissões pode ser feita de diversas formas, como por exemplo através da eletrificação dos transportes, aumento do uso de energias renováveis, reflorestamento e uso de biocombustíveis. No entanto, uma outra forma pouco utilizada até então para reduzir as emissões é a fabricação de eteno a partir do etanol. Isso se dá devido as emissões negativas: para cada tonelada de eteno produzida, podem ser capturadas até 4,55 toneladas de CO₂, quando a captura do CO₂ oriundo da fermentação alcoólica também é considerada. Nesse sentido, foi analisada também a possibilidade de ganho de competitividade da rota alcoolquímica em função da valoração das emissões de CO₂. Essa análise, até então não encontrada na literatura, foi feita através do cálculo do preço de breakeven do CO₂, isto é, o valor de emissão de CO₂ no qual o custo nivelado de ambas as rotas é equivalente.

O Brasil teria um grande potencial para liderar essa produção de eteno a partir do etanol. Isso acontece, principalmente, por ele já ser um grande produtor de etanol a partir da cana de açúcar. Em um cenário de eletrificação de transportes, por exemplo, que poderá ocorrer devido às mudanças climáticas, a produção desse etanol ficaria ociosa, podendo ser usado, por exemplo, para produzir eteno. Além disso, grande parte da nafta utilizada pelo Brasil é importada, diferentemente do etanol, o que encarece a sua produção de eteno por essa rota. É importante ressaltar que caso não haja a eletrificação dos transportes, produzir eteno a partir do etanol só faria sentido caso houvesse uma capacidade ociosa de etanol. Caso contrário, seria necessário diminuir a porcentagem de álcool na gasolina e importar mais nafta. Além disso, não traria benefícios ao meio ambiente, uma vez que, embora por um lado as emissões da produção de eteno fossem reduzidas, as emissões causadas pelo uso de combustíveis aumentariam.

É importante ressaltar também que a produção de plásticos pode trazer problemas de poluição, principalmente no setor de embalagens descartáveis. Existem inclusive medidas em fase de implementação no Brasil que visam reduzir ou mesmo proibir o uso de embalagens descartáveis. No entanto, a maior parte do destino do eteno não seria afetado, e esta demanda poderia ser absorvida por outros setores, como por exemplo o setor têxtil e o da construção civil. Dessa forma, os riscos de se construir uma nova planta de eteno hoje não seriam significativos nesse sentido.

No capítulo 3 foi estabelecida a metodologia para uma comparação apropriada entre as duas rotas. Foram analisados dois combustíveis possíveis para a rota via etanol: o bagaço e o gás natural, ocorrendo uma pequena diferença de custo e de emissões de CO₂ entre eles. No entanto, no caso de uma fábrica de eteno de grande porte, esta deverá, por questões logísticas, utilizar gás natural. Isso acontece pois esta deverá estar localizada perto de um centro consumidor, estando distante, portanto, da distância máxima de transporte de biomassa, que é de 50km. Além disso, foram considerados dois cenários de emissões de CO₂: considerando a captura do CO₂ oriundo somente do crescimento da cana de açúcar e considerando também o carbono capturado a partir da fermentação alcoólica. É importante ressaltar que não foram considerados neste trabalho eventuais custos da captura do CO₂ oriundo da fermentação alcoólica. Foi constatada uma grande variação nos preços da nafta e do etanol. Como o horizonte econômico considerado foi de 30 anos, o comportamento destes preços é de difícil previsibilidade, e uma alteração nestes influenciaria diretamente no custo nivelado do eteno. Para realizar a avaliação financeira das rotas foi estabelecido também uma taxa de desconto de 15% para ambas as rotas.

No capítulo 4 foram apresentados os resultados da avaliação econômica e financeira. Para a rota via etanol, constatou-se que os maiores componentes do custo nivelado do eteno são o custo do etanol, o CAPEX, e os custos de operação e manutenção da planta, sendo que o custo com o etanol representa cerca de 82% do custo nivelado total.

Para a rota via nafta, os maiores custos foram o da nafta, seguidos também pelo CAPEX e pelos custos de operação e manutenção. No entanto, os custos com os insumos são maiores que o próprio custo nivelado, devido a venda dos coprodutos formados no processo de craqueamento a vapor da nafta. O valor do custo da nafta descontado do valor de crédito de coprodutos representa cerca de 71% do custo nivelado total de eteno.

Quando comparamos as duas rotas, percebemos que em ambas o seu custo nivelado total é bastante influenciado pelo preço dos seus insumos. No entanto, percebemos que no caso da rota via nafta essa dependência é menor. Além da porcentagem ser inferior (71% contra 82%), constatou-se que o preço da nafta e de seus coprodutos estão relacionados, ou seja, mesmo em cenários com um elevado preço da nafta, o custo nivelado de etileno não seria tão afetado, uma vez que o valor de crédito obtido com a venda dos coprodutos da nafta também subiria. Percebeu-se também que o CAPEX da rota via etanol é menor do que na rota via nafta, enquanto que o OPEX da rota via etanol é mais cara que na rota via nafta. Quando somados o CAPEX e o OPEX, o custo da rota via etanol é bastante superior ao da rota via nafta. Além disso, a rota de craqueamento a vapor da nafta produz também propeno, butenos, BTX e óleo combustível. Ainda que a rota via etanol fosse escolhida, esses produtos teriam que ser fabricados a partir de rotas alternativas, como por exemplo a rota MTO. Entretanto, esses custos não foram considerados nesse trabalho.

Foi realizada também uma análise de sensibilidade levando em conta quatro fatores: o preço dos insumos, a taxa de desconto, o valor das contingências de processo e de projeto para a rota via etanol e o valor do fator de O&M utilizado também para a rota via etanol.

Quando se analisa o preço dos insumos, percebe-se que ambos tiveram uma elevada variação nos últimos anos. Entretanto, conforme visto acima, uma alta no preço do insumo tem um impacto muito maior no custo nivelado de eteno no caso da rota via etanol, devido a relação existente entre o preço da nafta e os coprodutos derivados da mesma.

Analisando a taxa de desconto, percebe-se que a rota via nafta é mais afetada que a rota via etanol caso haja um aumento na taxa de desconto. No entanto, os custos das duas rotas não se tornam equiparáveis pela simples variação da taxa de desconto. Além disso, a troca do bagaço pelo gás natural não traz mudanças significativas, principalmente quando não são consideradas as taxações de CO₂.

Quando analisada a hipótese de ambas as rotas possuírem o mesmo domínio técnico (mesmo fator de contingência de processo e de projeto), percebeu-se que ainda assim o seu custo estaria bem superior ao da rota via nafta. Isso elimina o argumento de que se ambas as rotas estivessem o mesmo domínio técnico, a rota etanol poderia ser escolhida quando levados em conta apenas parâmetros econômico-financeiros.

Por último, ao se testar o mesmo fator de O&M da rota via nafta para a rota via etanol, percebeu- se também que a rota etanol ganha competitividade, porém não a ponto de competir com a rota via nafta em um cenário em que as emissões de CO₂ não são valoradas.

Quando analisados também fatores ambientais e considerando uma valoração das emissões de CO₂, o que ainda não acontece no Brasil, a rota via nafta perde força devido as suas emissões de CO₂ e, principalmente, pelo poder de captura de CO₂ da rota via etanol. Quando calculados os preços de convergência para o caso padrão, percebe-se que este varia de 97 até 169US\$/tonelada de CO₂, dependendo da forma de calcular as emissões de cada rota. O país em que a emissão de CO₂ é mais cara atualmente é a Suécia (140US\$/tonelada de CO₂), o que mostra que a rota via etanol já poderia se tornar competitiva em alguns países. Outros países como a Suíça e a Finlândia já praticam preços elevados: 101 e 77US\$/tCO₂ respectivamente. No entanto, a maioria dos países apresentam taxas inferiores a 30US\$/tCO₂. Se levarmos em conta a crescente preocupação mundial com as mudanças climáticas, esse cenário parece bastante promissor para a produção de eteno a partir de etanol, uma vez que o valor das taxações de emissões tende a aumentar.

Diante da alta variação do preço dos insumos, optou-se por realizar uma análise mais detalhada, interpolando-se diversos valores entre os menores e os maiores preços dos insumos para ambas as rotas. Foi observado que em diversos cenários o preço de convergência do CO₂ é negativo, ou seja, a rota via etanol é mais vantajosa. Além disso, em todos os cenários observados, mesmo no cenário com o maior preço do etanol e o menor preço de nafta, o preço de convergência está bem abaixo dos 1000US\$/tonelada de CO₂, valor previsto para que o aquecimento global não ultrapasse 2ºC desde a era préindustrial. Quando a captura do CO₂ gerado durante a fermentação alcoólica não é considerada, o maior preço de convergência encontrado é de 427US\$/tonelada de CO₂. Caso essa captura seja considerada, esse valor cai para 327US\$/tonelada de CO₂. Portanto, caso o mercado de CO₂ seja realmente implementado no Brasil e o mundo continue a tomar cada vez mais medidas para conter as mudanças climáticas, a produção de eteno a partir do etanol tende a ser cada vez mais promissora. No entanto, o problema de como produzir os coprodutos oriundos do craqueamento a vapor da nafta ainda persiste, uma vez que são rotas não totalmente consolidadas e de maior custo.

Quando analisada a possível introdução do eteno brasileiro via etanol no mercado chinês, percebe-se que este se torna rapidamente competitivo com o aumento das taxas

de emissão de CO₂. Caso não seja considerada a captura do CO₂ oriundo da fermentação alcoólica, o preço do eteno brasileiro se iguala ao do mercado chinês com uma taxa de 68US\$/tCO₂. Caso esse CO₂ seja considerado, esse valor cai para 46US\$/tCO₂. Vale ressaltar que não foram considerados nesse trabalho eventuais impostos ou barreiras que o governo chinês poderia impor ao eteno brasileiro. Vale lembrar também que como o valor do frete para a China calculado foi de 105US\$/tonelada de eteno, e as emissões de apenas 0,15tCO₂/tonelada de eteno, seria possível que o eteno também atingisse competitividade em outros países, a partir de um determinado valor de emissão, uma vez que a China é um dos países mais distantes do Brasil. Dessa forma, o frete de eteno teria custos e emissões ainda menores.

O eteno poderia ainda atingir valores de custo nivelado negativos. Isso aconteceria a partir de um valor de emissão de 516US\$/tCO2 não considerando a captura do CO2 gerado durante a fermentação alcoólica e 347US\$/tCO2 considerando também a captura desse CO2. Como a previsão de valor de emissão para manter o mundo com aquecimento abaixo dos 2ºC é de cerca de 1000US\$/tCO2, não se trata de um acontecimento tão distante da realidade.

Finalmente, como sugestões de estudos futuros, recomenda-se:

- Incluir neste estudo também as rotas de produção de eteno via gás natural e MTO;
- Fazer um estudo aprofundado de custos e emissões das rotas da desidrogenação do propano e das rotas MTO com baixas emissões de CO₂, se possível incluindo também curvas de aprendizagem;
- Realizar um trabalho semelhante, porém sobre a ótica de outros petroquímicos básicos (propeno, butenos, BTX, amônia);
- Repetir o estudo realizado, porém considerando outras formas de alocação dos coprodutos da nafta além da venda destes coprodutos, como por exemplo via massa, energia, exergia e produtividade marginal).
- Incluir no estudo a produção de petroquímicos da cadeia do açúcar através da rota
 MTO (via gaseificação do bagaço e via reforma do biogás de vinhaça);
- Considerar também os impactos ambientais e sociais da produção de etanol (uso do solo, agrotóxicos, geração de empregos, etc);

- Analisar os efeitos de escala da planta com capacidade de 1 milhão de toneladas de
eteno verde por ano.

Referências Bibliográficas

ABB LUMMUS GLOBAL in **Hydrocarbon Processing:** Petrochemical Processes 2005. Houston: 2005. 209 p. GULF PUBLISHING COMPANY

ALERJ. (Org.) 2018. **PROJETO DE LEI Nº 3794/2018.** Disponível em: http://www3.alerj.rj.gov.br/lotus_notes/default.asp?id=7&url=L3NjcHJvMTUxOS5uc2YvMTA2MWY3NTlkOTdhNmIyNDgzMjU2NmVjMDAxOGQ4MzIvZjk5Mjc2N2ZlZTRjZjdhNjgzMjU4MjJkMDA2MTU4ZTY/T3BlbkRvY3VtZW50. Acesso em: 18 dez. 2018.

ANP (Org.). **Produção nacional de derivados de petróleo (metros cúbicos).** 2018. Disponível em: http://www.anp.gov.br/dados-estatisticos. Acesso em: 15 nov. 2018.

Anuário da Indústria Química Brasileira. São Paulo; Associação Brasileira da Indústria Química – ABIQUIM, 2015

BAIN&COMPANY, 2014. Estudo do potencial de diversificação da indústria química brasileira: Relatório final. Bain&Company, São Paulo, 2014.

BASTOS, V. D. **Desafios da petroquímica brasileira no cenário global.** BNDES Setorial, Rio de Janeiro, n. 29, p. 321-358, mar. 2009

BEN, **Relatório Final do Balanço Energético Nacional de 2017 (ano base de 2016).** EPE – Empresa de Pesquisa Energética, MME. 2017.

BLACK, J., 2013. *Cost and Performance Baseline for Fossil Energy Plants - Volume 1: Bituminous Coal and Natural Gas to Electricity*, National Energy Technology Laboratory (NETL) U.S. Department of Energy (DOE). Available at: http://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=1024.

BRANCO, David Alves Castelo. **AVALIAÇÃO DO REAL POTENCIAL DE REDUÇÃO DAS EMISSÕES DE CO₂ EQUIVALENTE COM USO DA CAPTURA EM UMA UTE A CARVÃO.** 2012. 137 f. Tese (Doutorado) - Curso de Planejamento Energético, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2012.

BRASIL. SENADO. **Projeto de Lei do Senado nº 92, de 2018.** Disponível em: https://www25.senado.leg.br/web/atividade/materias/-/materia/132457>. Acesso em: 18 dez. 2018.

BRASKEM, 2018a. **O Setor Petroquímico.** Disponível em http://www.braskem-ri.com.br/o-setor-petroquimico. Acessado em 30 de Junho de 2018

BRASKEM, 2018b. Polietileno verde I'm greenTM - **Braskem.** Disponível em: < http://plasticoverde.braskem.com.br/site.aspx/PE-Verde-Produtos-e-Inovacao>. Acesso em: 15 jan. 2018.

BRASKEM, 2018c. **Valuation Book 1T18**, Disponível em http://www.braskem-ri.com.br/. Acessado em: 13 jul. 2018.

CADERNO SETORIAL ETENE: INDÚSTRIA PETROQUÍMICA. Banco do Nordeste: out. 2017

CAMERON, Gregory et al (Comp.). **Process Design for the Production of Ethylene from Ethanol.** Senior Design Reports (CBE), Pennsylvania, v. 14564, n. 135634, p.1-145, abr. 2012.

CARVALHO, Francielle Mello de. **EVALUATION OF THE BRAZILIAN POTENTIAL FOR PRODUCING AVIATION BIOFUELS THROUGH CONSOLIDATED ROUTES.** 2017. 137 f. Dissertação (Mestrado) - Curso de Planejamento Energético, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017.

CASSERES, Eduardo Miranda Muller Drumond. **POTENCIAL DE MITIGAÇÃO DAS EMISSÕES DE CO2 DO TRANSPORTE MARÍTIMO INTERNACIONAL: UMA ANALISE BASEADA EM CENÁRIOS PARA O CASO DOS NAVIOS- TANQUE DE PETROLEO BRUTO.** 2018. 185 f. Dissertação (Mestrado) - Curso de Planejamento Energético, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2018.

CEPEA. Etanol - Centro de Estudos Avançados em Economia Aplicada - CEPEA - Esalq/USP. Disponível em: https://www.cepea.esalq.usp.br/br/indicador/etanol.aspx. Acesso em: 01 nov. 2018.

DECHEMA (Ed.). **TECHNOLOGY STUDY Low carbon energy and feedstock for the European Chemical Industry.** Frankfurt, 2017. 168 p

FALLAS, E.B. *Defining Brazil's place in the petrochemical landscape*. Americas Petrochemicals, 2017.

FATTOUH, Bassam; BROWN, Craig. **US NGLs Production and Steam Cracker Substitution:** What will the Spillover Effects be in Global Petrochemical Markets?. Oxford: The Oxford Institute For Energy Studies, 2014.

GOMES, G., DVORSAK, P., HEIL, T. Indústria petroquímica brasileira: situação atual e perspectivas. *BNDES Setorial*, Rio de Janeiro, No 21, pp. 75-104, março 2005.

GOMES, G., MONTEIRO, D., MONTENEGRO, R. Indústria petroquímica brasileira: em busca de novas estratégias empresariais. BNDES Setorial, n. 9, 1999.

GOMES, Gabriel Lourenço. ANÁLISE DA INTEGRAÇÃO REFINO-PETROQUÍMICA - OPORTUNIDADES ECONÔMICAS, ESTRATÉGICAS E AMBIENTAIS. 284 f. Tese (Doutorado) - Curso de Planejamento Energético, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2011.

GOMES, Pedro Aguiar. AVALIAÇÃO DAS OPORTUNIDADES DO GÁS NATURAL LIQUEFEITO EM PEQUENA ESCALA NO BRASIL SOB AS PERSPECTIVAS DO PRODUTOR, TRANSPORTADOR E DO CONSUMIDOR **FINAL.** 2018. 177 f. Dissertação (Mestrado) - Curso de Planejamento Energético, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2018.

Hatch, L. F.; Matar, S. (2001) **Chemistry of Petrochemical Processes**. 2nd edition. Boston

HOFFMANN, Bettina Susanne. O POTENCIAL TERMELÉTRICO A CARVÃO NO RIO GRANDE DO SUL DIANTE RESTRIÇÕES DE DISPONIBILIDADE DE ÁGUA E OBJETIVOS DE REDUÇÃO DE EMISSÕES DE CO₂, APLICANDO A QUEIMA EM LEITO FLUIDIZADO. 2013. 226 f. Tese (Doutorado) - Curso de Planejamento Energético, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2013.

ICIS. **OUTLOOK '18: Steady as she goes for Europe butadiene.** Disponível em: https://www.icis.com/explore/resources/news/2017/12/21/10176438/outlook-18-steady-as-she-goes-for-europe-butadiene/. Acesso em: 20 out. 2018.

IEA. **The Future of Petrochemicals:** Towards more sustainable plastics and fertilisers: IEA, 2018.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. IPCC Guidelines for National Greenhouse Gas Inventories, 2006.

IPEA. **Apenas 13% dos resíduos sólidos urbanos no país vão para reciclagem.** 2017. Disponível em:

http://www.ipea.gov.br/portal/index.php?option=com_content&view=article&id=2929http://www.ipea.gov.br/portal/index.php?option=com_content&view=article&id=2929http://www.ipea.gov.br/portal/index.php?option=com_content&view=article&id=2929<a href="http://www.ipea.gov.br/portal/index.php?option=com_content&view=article&id=2929<a href="http://www.ipea.gov.br/portal/index.php?option=content&view=article&id=2929<a href="http://www.ipea.gov.br/portal/index.php?option=content&view=article&id=2929<a href="http://www.ipea.gov.br/portal/index.php?option=content&view=article&id=2929<a href="http://www.ipea.gov.br/portal/index.php.gov.br/portal/index.php.gov.br/portal/index.php.gov.br/portal/index.php.gov.br/portal/index.php.gov.br/portal/index.php.gov.br/portal/index.php.gov.br/portal/index.php.gov.br/portal/index.php.gov.br/portal/index.php.gov.br/portal/index.php.gov.br/portal/index.php.gov.br/portal/index.php.gov.br

KAPSARC. **KAPSARC Maritime Transport Analysis Tool.** Disponível em: http://apps.kapsarc.org/kutaf/home?to=China&from=Brazil>. Acesso em: 10 nov. 2018.

KELLOGG BROWN & ROOT in **Hydrocarbon Processing:** Petrochemical Processes 2005. Houston: 2005. 209 p. GULF PUBLISHING COMPANY (Ed)

MARQUES, Duan et al. **AVALIAÇÃO TÉCNICO-ECONÔMICA DO PROCESSO DE DESIDRATAÇÃO CATALÍTICA DO BIOETANOL A ETENO VERDE**. In: XXII CONGRESSO BRASILEIRO DE ENGENHARIA QUÍMICA, 2018, São Paulo

Szklo et al. Opções transversais para mitigação de emissões de gases de efeito estufa: captura, transporte e armazenamento de carbono. MCTIC, Brasília, 2017.

MDIC (Org.). China se destaca como principal parceiro comercial do Brasil em **2017.** 2018. Disponível em: http://www.brasil.gov.br/noticias/economia-e-financas/2018/02/china-se-destaca-como-principal-parceiro-comercial-do-brasil-em-2017. Acesso em: 15 dez. 2018.

MENDONÇA, Jader Ferreira; LEAL JUNIOR, Ilton Curty. **Comparação dos Custos de Produção e Transporte de Etanol entre Brasil e Estados Unidos**. 7º SIMPÓSIO DE EXCELÊNCIA DE GESTÃO E TECNOLOGIA, 2010

MILANEZ, Artur Yabe et al. **O Acordo de Paris e a transição para o setor de transportes de baixo carbono: o papel da Plataforma para o Biofuturo**. BNDES Setorial, Rio de Janeiro, n. 45, p. [285]-340, mar. 2017.

MOREIRA, Fabrícia de Souza. A INTEGRAÇÃO REFINO PETROQUÍMICA COMO ALTERNATIVA PARA ATENDIMENTO DO CRESCENTE MERCADO DE PETROQUÍMICOS. 2008. 149 f. Dissertação (Mestrado) - Curso de Tecnologia de Processos Químicos e Bioquímicos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2008.

MOREIRA, C., FERNANDES, E., GOMES, G.L., DVORSAK, P., HEIL, T.B.B., BASTOS, V.D. Potencial de Investimentos no Setor Petroquímico Brasileiro 2007-2010. BNDES, 2006.

NOVACANA (Curitiba). **A cana-de-açúcar como fonte de energia elétrica.** 2014. Disponível em: https://www.novacana.com/estudos/a-cana-de-acucar-como-fonte-de-energia-eletrica-241013. Acesso em: 08 out. 2018.

OBERLAENDER, Roberta Guarany. ANÁLISE DE DESENVOLVIMENTO DE SISTEMAS DE SIMBIOSE INDUSTRIAL: PROPOSTA DE IMPLEMENTAÇÃO A PARTIR DO COMPLEXO PETROQUÍMICO DO RIO DE JANEIRO (COMPERJ).143 f. Dissertação (Mestrado) - Curso de Planejamento Energético, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2016.

PETROBRÁS. **Plano de negócios e gestão 2018-2022.** Disponível em http://www.petrobras.com.br/pt/quem-somos/estrategia/plano-de-negocios-e-gestao/ Acessado em 15 jul 2018

PERRONE, O. "A Indústria Petroquímica no Brasil", Instituto Brasileiro de Petróleo, Gás e Biocombustíveis – IBP, Ed. Interciência, Rio de Janeiro, 2010.

PLATTS. **S&P Global Platts Petrochemical Index (PGPI).** Disponível em: https://www.platts.com.es/news-feature/2014/petrochemicals/pgpi/propylene. Acesso em: 20 out. 2018.

PLATTS. **S&P Global Platts Petrochemical Index (PGPI).** Disponível em: https://www.platts.com.es/news-feature/2014/petrochemicals/pgpi/toluene. Acesso em: 20 out. 2018.

POLIZELI, Roberto Vendramini. **Análise da indústria química baseada em matéria- prima fóssil e renovável sob a ótica energética.** 2012. 161 f. Dissertação (Mestrado) - Curso de Planejamento Energético, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2012.

REN, T. Petrochemicals from oil, natural gas, coal and biomass: Energy use, Economics and Innovation. 2009. 219 f. Tese (Doutorado) - Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Holanda, 2009

SANTOS, Luan dos. Proposal for the implementation of a carbon pricing instrument in the brazilian industry: assessing competitiveness risks and distributive impacts. 2018. 263 f. Tese (Doutorado) - Curso de Planejamento Energético, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2018.

SCHAEFFER, Roberto et al. **PARTNERSHIP FOR MARKET READINESS PROGRAM (PMR) IN BRAZIL.** Rio de Janeiro, 2017. 188 p.

SEIDL, P. R.; BORSCHIVER, S.; SANTOS, P. C. dos; LEITE, L. F. **Integração Refino-Petroquímica: tendência e impactos.** Rio de Janeiro: Publit Soluções Editoriais, 2012

SILVA, Fábio Teixeira Ferreira da. **AVALIAÇÃO DA TORREFAÇÃO E DENSIFICAÇÃO DE RESÍDUOS AGRÍCOLAS NO BRASIL.** 2017. 214 f. Dissertação (Mestrado) - Curso de Planejamento Energético, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017.

SIMÃO, Stella Fernandes. **OPORTUNIDADES PARA A PETROQUÍMICA BRASILEIRA FACE AO FENÔMENO DO SHALE GAS.** 2014. 142 f. Dissertação (Mestrado) - Curso de Tecnologia de Processos Químicos e Bioquímicos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2014.

TAGOMORI, Isabela S. et al. **Designing an optimum carbon capture and transportation network by integrating ethanol distilleries with fossil-fuel processing plants in Brazil.** International Journal Of Greenhouse Gas Control, [s.l.], v. 68, p.112-127, jan. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.ijggc.2017.10.013.

TEIXEIRA, Marilane Oliveira. **A Indústria Petroquímica e de Fertilizantes.** Anhangabaú (SP): Cnq-cut (confederação Nacional do Ramo Químico), 2015.

TRADING ECONOMICS. **Trading Economics - Naphtha.** Disponível em: https://tradingeconomics.com/commodity/naphtha. Acesso em: 30 out. 2018.

UNEP (2017). **The Emissions Gap Report 2017**. United Nations Environment Programme (UNEP), Nairobi.

UNIDOP, 2016. Disponível em:

http://uniudop.com.br/index.php?item=noticias&cod=1138389. Acesso em: 01 nov. 2018.

WONGTSCHOWSKI, P.; (2002). "Indústria Química: Riscos e Oportunidades". São Paulo: Edgard Blucher, 215p.

WORLD BANK GROUP (Org.). **State and Trends of Carbon Pricing 2018.** Washington Dc, 2018.